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ABSTRACT 

As a result of the considerable differences in mass between vehicles and trains, 

accidences at highway-rail grade crossings (HRGCs) may result in severe injuries and fatalities. 

Therefore, HRGCs safety is considered one of the crucial transportation safety issues. 

Transportation decision makers and agencies need an efficient safety decision-making 

framework which is bale to consider crash occurrence and severity likelihood simultaneously. 

This study proposed a novel methodology and a statistical approach for HRGC crash analysis. 

The proposed method is competing risk model and the approach is Cox proportional hazard 

regression. This predictive method was well established in bioscience area but never been 

utilized in transportation area. Competing Risk Model (CRM) is a special type of survival 

analysis to accommodate the competing nature of multiple outcomes from the same event of 

interest, in transportation safety analysis the competing multiple outcomes are accident severity 

levels while the event of interest is accident occurrence. 

Transportation decision makers need a prioritization system to categorize crossings’ risk 

level based on their expected crash frequency and crash severity simultaneously. Therefore, with 

a hazard-ranking approach which considers crossings’ crash severity and frequency output, 

transportation decision makers are able to ensure that federal and state funds for grade crossing 

improvement projects are spent at the crossings that are considered the most in need of 

improvement. In this study two hazard-ranking models are proposed, the first one is based on the 

crash likelihood resulted by the proposed CRM output, and the second one is a hybrid accident 

prediction model/hazard index based on crash severity likelihoods estimated by the same CRM. 

Finally, to integrate the results of both hazard-ranking approaches, and classify grade crossings 
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and crossings’ location based on their crash frequency and severity likelihood simultaneously, 

the risk analysis is conducted by using the risk matrix and spatial risk analysis.  

Keywords: accident prediction, railroad grade crossing, competing risk models, counter-measure 

effectiveness, highway-railway grade geometric design, hazard-ranking model.   
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CHAPTER 1. INTRODUCTION 

1.1. Highway-Rail Grade Crossing Safety   

The tragic consequence of traffic accident is that it causes deaths at a very high rate. As a 

result of the growing automobile population in the early twentieth century, the number of fatal 

accidents exceedingly increased. The number of fatalities in traffic accidents declined 

substantially after the late twentieth century after more safety research were done and more 

transportation safety infrastructures were constituted. However, still, deaths driven by vehicle 

crashes hover at more than 30,000 annually, so the transportation community must consider 

creating innovating, and rethinking the possibilities realm to enhance safety and decrease 

congestion (C. Andersen, 2013).  

The highway-rail grade crossing (HRGC) is a specific spatial location where two 

transportation modes of rail and road intersect with each other at grade level. HRGCs accidents 

are mostly associated with potential points of conflict between roadway traffic and train traffic. 

Because of the substantial mass difference between vehicle and train, the crashes usually have 

relatively severe results. In addition, traffic delays of both the railway and the roadway can 

considerably extend the economic consequences of crashes at HRGCs, and the expenditures 

from disruptions to both the roadway and railway networks can also be significant.  

The high fatality rate indicates that traffic accidents at HRGCS are catastrophic. Between 

1990 and 2018, there were 93,597 crashes at public and private HRGCs across the United States 

where active traffic devices (e.g., gates, flashing lights, etc.) are in place (FRA, 2018). According 

to FRA (2018), about 12% of these crashes resulted in 11,269 fatalities, while only 0.06% of all 

traffic crash types lead to deaths (Zheng, 2018). Figure 1 shows that crash frequency and resulted 

injuries and fatalities at HRGC have a decreasing trend with moderate fluctuation from 1990 to 
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2018 in the U.S. However, based on Figure 2, in North Dakota State, the HRGC crash frequency 

is not managed well in the same period. Although the crash frequency was low in 2006, it starts 

to raise until 2014 and starts to slightly increase again after 2016. The fatality rate (fatal%) falls 

within a range of 0% to 44%, which is higher than the national average over 29-year. Between 

2001and 2005, and from 2012 to 2015, the injury rate (injury%) in North Dakota was much 

higher than nation one. Recently, North Dakota injury rate has started to dramatically increase 

from 2017 and it is almost equal to the nation rate in 2018.  

 

Figure 1. HRGC Crash Frequency and Severity Count Nation Wide, 1990-2018 

Source: Federal Railway Administration, 2018  

Accordingly, to analyze and predict both crash frequency and severity simultaneously 

and consistently, it is crucial for transportation agencies and decision-makers seeking to improve 

HRGC safety system with the aim of identifying contributing factors having impact on crash 
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frequency and severity. A large number of literature counts and assesses the key factors 

contributing to the likelihood of crash frequency at HRGCs. However, an accurate accident 

prediction model is critical for HRGC safety improvement which is able to incorporate crash 

frequency and crash severity in the same model. 

 

Figure 2. HRGC Crash Frequency and Severity Count North Dakota, 1990-2018 

Source: Federal Railway Administration, 2018  

1.2. Crash Frequency and Severity Statistical Modeling 

Most research on HRGC safety has focused either on the analysis of crash frequency 

(Zheng, Lu, & Pan, 2019; Zheng, Lu, & Tolliver, 2016) or crash severity. HRGC crash severity 

studies are often based on categorical outcome modeling using historical police reports and FRA 

HRGC crash datasets(Eluru, Bagheri, Miranda-Moreno, & Fu, 2012; W. Fan, Kane, & Haile, 

2015; Ghomi, Bagheri, Fu, & Miranda-Moreno, 2016; Haleem & Gan, 2015; W. Hao & Daniel, 
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2014, 2016, 2013; S.-R. Hu, Li, & Lee, 2010; Kang & Khattak, 2017; Liu & Khattak, 2017; C. 

Ma, Hao, Xiang, & Yan, 2018; Savolainen, Mannering, Lord, & Quddus, 2011; Zhao, Iranitalab, 

& Khattak, 2018; Zhao & Khattak, 2015; Zheng, Lu, & Lantz, 2018). As a result of the random, 

discrete, and non-negative nature of collision data, one of the most common methodologies to 

grade crossing safety literature is the use of generalized linear models (GLMs) with crash 

frequency or severity as the independent variables of models. Heydari and Fu (2015) applied a 

Poisson Weibull model for crash frequency. Statistical models (Jinsun Lee, Nam, & Moon, 2004; 

Lu & Tolliver, 2016; Oh, Washington, & Nam, 2006; Z. Ye, Xu, & Lord, 2018), including zero 

inflated, hurdle, and generalized event count models, were utilized to solve data issues such as 

the excess number of zero accidents and over/under dispersions. Data mining methods, such as 

the hierarchical tree-based regression technique, are also adopted by Yan et al. (2010) to predict 

train-vehicle crash frequencies at public passive grade crossings in the United States. Heydari et 

al. (2018) used a method to compare different geographic areas in terms of a pre-specified safety 

performance, which is able to consider collision frequency of a given type.  

Majority of the modeling safety modeling techniques used in previous crash severity 

research focused on discrete choice approaches because of the discrete nature of crash severity 

levels. Hao and Daniel (2013) and Abdel-Aty and Keller (2005) used an ordered Probit model to 

consider U.S. collision severity levels are naturally ordered. Hao and Daniel (2014) continued 

the previous research projects and adopted an ordered probit model by taking into account the 

different traffic control devices at grade crossings. Eluru et al. (2012) measures crash severity 

levels by considering passive and active traffic control devices by applying a latent ordered 

response model using 10 years of accident dataset at grade crossings in the United States. Their 

results indicated that accidents at grade crossings with gates were less likely to result in severe 
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crashes compared with crossings with crossbucks only, while crashes at crossings with flashing 

lights are more likely to have severe crashes like injuries and fatalities. In addition, Hu et al. 

(2010) applied a generalized logit model to investigate contributors impacting crash severity in 

Taiwan’s HRGCs. Recently, Zhao et al (2018) applies both binary logit models and generalized 

linear mixed models to investigate the association of potential factors with pedestrian injury 

severity levels using 10 years of collision data at grade crossings in the United States.  

It should be stressed that the characteristics of HRGCs at the time of a crash (e.g., traffic 

crossing control devices and highway traffic volume) may vary over time, including before and 

after the crash occurrence (Liu and Khattak, 2017). Therefore, estimation of crash severity 

likelihood by accounting for the time effects of contributing factors may improve the accuracy. 

The previous studies do not consider these time effects, probably because of the complexity this 

consideration (time effect) may add to the methodology. Consequently, to account for these time 

effects, the main interest is the time until the crash occurrence with a specific severity level. The 

analysis may be complicated as a result of 1) the need to identify an association between a set of 

factors by the time of collision occurrence with each severity level in a model, and (2) HRGCs’ 

collision histories can be collected for a limited period of time, and only the time of a crash 

occurrence during the study period can be recorded. In other words, crossings are recorded as 

event-free without any information from after the analysis period, leading to right-censored data. 

Consequently, specific algorithms are needed to take these characteristics into account.  

1.3. Survival Analysis and Competing Risk Model (CRM) 

Survival analysis has been utilized to measure the failure time, such as biological death 

(in medical science), engineering failure including mechanical failure (J. Fan, Feng, & Wu, 

2010). In survival analysis, data are modeled in the form of time-to-event and are usually open to 
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censoring because of the study period termination. The main target of survival analysis is to 

investigation of the dependence of the survival time (failure time) on the contributors vector (J. 

Fan et al., 2010). Consequently, survival analysis is a methodology which can take into account 

the characteristics of a grade crossing as time-to-crash occurrence data.  

To estimate the crash frequency and severity likelihood simultaneously over the 

timespan, the competing risk model (CRM) as the specific type of survival analysis is counted as 

a novel mathematical approach. In transportation safety analysis, CRM’s objective function is 

quantifying crash occurrence likelihood in the presence of more than one crash event, including 

property damage only (PDO), injury, and fatal crashes. Moreover, those multiple events are 

considered as competing with each other. Correspondingly, the target of applying CRM approach 

is estimating the likelihood of accidents occurring at a crossing during a 29-year time span from 

1990 to 2018, while the crossing possibly experiences more than one severity level (PDO, injury, 

and fatal).  

Cause-specific Cox regression (Cox, 1972) is a common approach to solve the competing 

risk model as a complex algorithm. Knowledge-gain based benefits to be discovered through the 

application of this approach are 1) the ability in considering complexity in grade crossing safety 

analysis, e.g., non-linear relationships between HRGCs crash severities and the contributing 

factors, 2) ability in quantifying long-term time effects on crash frequency and severities, 3) a 

straight-forward and integrated one-step estimation process that is able to consider both crash 

frequency and severity likelihood in the same model which makes direct hazard-ranking 

considering both crash frequency and severity likelihood possible, and 4) interpretative impact of 

identified covariates from both the direction and magnitude perspective. CRM and Cause-
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specific Cox regression has been applied widely in medical research. However, the model has 

never been applied to transportation safety.  

1.4. Grade Crossing Geometric Analysis  

Vehicle users have the flexibility to choose both their route and speed (Ogden, 2007). On 

the other hand, train operators are restricted to a fixed track and changing their speed might need 

significant amounts of time (Ogden, 2007). Consequently, to decrease the probability of 

highway-rail grade crossing (HRGC) accidents, trains should have the right of way. 

Correspondingly, transportation engineering designers who focus on designing, constructing, and 

optimizing HRGCs’ safety performance must take into account factors associated with geometric 

capacities and infrastructures, expenditure, and their effects on safety outcomes in assisting 

vehicle users in meeting their safety-related responsibilities (Ogden, 2007). Therefore, 

investigating of grade crossing geometric factors’ effects on vehicle crash severity and frequency 

is critically important to transportation agencies and decision makers.  

Four main grade crossing geometric factors are as follows: 

1) Distance between crossings and their nearest roadway intersections: Nearest 

intersecting roadway is determined by identifying roads parallel to the railroad which 

intersect with the road that is part of the HRGC. According to the Railroad-highway 

Grade Crossing handbook (2007), some accidents at grade crossings are because of the 

short storage distance for vehicles waiting to move through the crossing and the 

intersection.  

2) Crossing angle: Highway-railway angle is counted as one of the main factors effecting 

sight distance at a grade crossing (Ogden, 2007). However, the national HRGC 

inventory data only provides a categorical format of this factor.  
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3) Number of traffic lanes: It clearly represents the number of roadway traffic lanes 

crossing the railway track. According to Austin and Carson (2002), a greater number 

of traffic lanes at a grade crossing can have a significant association with higher 

accident frequencies.  

4) Number of main tracks: This factor demonstrates the number of main railway tracks 

that cross the roadway. Ogden (2007) showed that the majority of the collisions 

occurred on the main tracks. In addition, Zheng et al. (2019) indicated that the higher 

number of crossing tracks causes the longer time for vehicles to pass the crossing 

which might be associated with a higher crash probability.  

Grade crossing geometric factors effect on crash frequency as these factors have impacts 

on travel operations and sight distances at crossings. However, their precise impact on both crash 

frequency and crash severity probability are still unclear. In addition, the long-term effects of the 

geometric factors also need to be investigated to measure their effects on grade crossing safety 

performance over the specific timespan (Ogden, 2007). 

1.5. Grade Crossing Countermeasures Effectiveness 

Between 1981 and 2018, crash frequency in the U.S. decreased by around 76% at grade 

crossings (FRA,2018). The main reason of such reduction can be related to upgrades of passive 

crossing controls to active controls (Lenné et al., 2011; Meeker, Fox, & Weber, 1997; Millegan, 

Yan, Richards, & Han, 2009). Passive crossing controls (e.g. crossbucks signs and stop signs) are 

generally proved to be less effective traffic control devices to vehicle users compared to active 

controls including flashing lights, audible devices (bells), and gates. On the other hand, although 

HRGCS accidents, including fatal, and injury crashes all have fallen nearly every year since 

1981, both fatality and injury rates per crash at grade crossings have raised by around 5% and 
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2%, respectively between 1981 and 2018 (FRA,2018). Consequently, investigating and 

quantifying the countermeasures’ effects on HRGCs safety performance, especially on crash 

frequency and severity simultaneously is needed. 

Countermeasures at HRGCs include all traffic control devices and other warning and 

barrier devices at or on approaches to crossings. The main goal of grade crossing 

countermeasures is to guarantee safe and efficient rail and highway operations at crossings. An 

extensive range of countermeasures safety operations have been investigated in the field. 

Previous studies analyzed the changes in crash frequency or crash severity after adding specific 

types of traffic control devices at grade crossing. Their research has shed more light on the 

understanding of countermeasures effectiveness at grade crossings. In general, active devices are 

more accepted as safety improvement alternatives than passive devices. However, most studies 

on countermeasures effectiveness have been either at the project level or have failed to address 

the before-improvement condition.  

1.6. Grade Crossing Hazard-Ranking  

In the United States, the safety of highway-rail grade crossings (HRGCs) is identified as 

a national priority. To identify crossings and their location with higher risk of accident, state 

DOTs benefit from hazard-ranking models to develop a priority list of HRGCs in their 

jurisdiction (Sperry et al., 2017a). According to Ogden and Cooper (2019), the following criteria 

must be considered in prioritizing locations for HRGCS safety improvement:  

1) The potential decline in the frequency and/or severity of collisions. 

2) Project costs and resource constraint.  

3) Using the hazard index formula to evaluate the relative hazard of public highway-rail 

grade crossings. 
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4) Incident/accident history of a particular crossing location. 

5) On-site inspections.  

6) The potential risk for large numbers of people at public HRGCs used on a regular basis 

by passenger trains, school buses, transit buses, pedestrians, bicyclists, or by trains 

and/ or motor vehicles carrying hazardous materials. 

7) Other criteria as appropriate in each State. 

The prioritization process can be identified by the hazard index or collision prediction 

formula. A hazard index is applied to rank the crossings in relative terms, the higher estimated 

index, the more hazardous the crossing. However, the collision prediction formulae are used to 

calculate the crash frequency or sometimes severity at the HRGC (Ogden & Cooper, 2019; 

Sperry, Naik, & Warner, 2017a). To prioritize a grade crossing, the hazard index approach needs 

the analyst to quantify a ranking metric or value that will assign the hazard level to a particular 

crossing relative to other crossing locations. One of the known hazard index approaches is the 

New Hampshire Hazard Index ranking methodology. The New Hampshire Hazard Index method 

is counted as a basic approach to calculate the hazard index which considers 1) the exposure 

index indicating cross product of the AADT and train volume and 2) a "protection factor" to 

calculate the type of warning device effect at the crossing. On the one hand, the advantage of the 

hazard index methodologies is that they are easy to understand. On the other hand, the main 

disadvantage of the hazard index approach is that the estimated hazard index value is relative 

with other HRGCs’ hazard index values, which means a single crossing’s hazard index value is 

not interpretable without referencing to other crossings’ hazard index value (Ogden & Cooper, 

2019). 
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The crash prediction model is another approach to prioritize grade crossings by utilizing 

the mathematical formula to calculate the predicted crash frequency (or severity) at a crossing. 

Therefore, the predicted value is used as the ranking metric for HRGCs’ prioritization targets. 

The advantage of the crash prediction model is the fact that it considers several characteristics or 

factors which significantly have effect on the crossings’ crash risk. Moreover, prediction models’ 

output can be integrated with economic data (e.g. crash costs) to result a comprehensive 

economic analysis associated with grade crossing improvement projects (Ogden & Cooper, 

2019). Approximately 50% of the states used a crash prediction models to prioritize their 

crossings (Sperry et al., 2017a). Although the USDOT Accident Prediction Model, the NCHRP 

50 Accident Prediction Model, the Peabody-Dimmick formula are common hazard-ranking 

models which are used by state DOTs, some states (e.g. Connecticut, Florida, Missouri, North 

Carolina, and Texas) have developed specific hazard-ranking models in accordance with their 

accident trends and available crash records (Niu, Chen, & Dowell, 2014; Sperry et al., 2017a; 

Weissmann et al., 2013). It is worth noting that the USDOT Accident Prediction Model is the 

most prevalent model among the mentioned crash prediction models and according to Sperry et 

al. (2017), at least 19 states or 38% of states reported utilizing this model for their HRGCS 

ranking.  

Most state DOTs’ studies and research projects on proposing or utilizing hazard-ranking 

models have focused on either crash prediction models (Farr, 1987b; Ogden, 2007; David W 

Schoppert & Hoyt, 1967) or calculation of hazard index (Abioye et al., 2020; Faghri & 

Demetsky, 1986; Qureshi et al., 2003; Tustin, Richards, McGee, & Patterson, 1986) and only 

few studies have explored hybrid accident prediction model hazard index (Niu et al., 2014; 

Weissmann et al., 2013). Moreover, the vast majority of designed prioritization systems by state 
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DOTs only consider the crash frequency at crossings. According to Sperry et al. (2017), only one 

state considered crash severity as a factor in grade crossing hazard-ranking. Therefore, previous 

studies have failed to propose the comprehensive hybrid accident prediction model hazard index 

which is able to consider crash frequency and severity in grade crossing hazard-ranking. Such a 

comprehensive prioritization system is important for transportation decision makers seeking to 

identify crossings and locations that have higher priority in receiving improvement services 

considering their both crash frequency and crash severity risks.  

1.7. Current Research Gaps 

Several studies have been found to conduct research on transportation accidents 

prediction. Most past studies have focused on roadway intersection or roadway crashes (Cai, 

Abdel-Aty, & Lee, 2017; Geurts, Thomas, & Wets, 2005; Y. Hao, Xu, Qi, Wang, & Zhao, 2019; 

Huang, Zhou, Wang, Chang, & Ma, 2017; Islam & Brown, 2017; Kumar, Toshniwal, & Parida, 

2017; Jaeyoung Lee, Abdel-Aty, & Cai, 2017; Li, Shrestha, & Hu, 2017; Paul, 2019; Qin, Ivan, 

& Ravishanker, 2004; Ulak et al., 2019; Veeramisti, Paz, Khadka, & Arteaga, 2019; Wang & 

Abdel-Aty, 2006; Zheng et al., 2018). Relatively few studies have explored graded crossing 

collisions compared to highway accidents (Cho & Rilett, 2006; Ghomi et al., 2016; Haleem, 

2016; Khattak, Gao, & Luo, 2012; Lu & Tolliver, 2016; Tung & Khattak, 2015; Yue & Jones, 

2010; Zhao & Khattak, 2017; Zheng et al., 2019, 2016). 

In addition, the majority of previous studies and research projects either focus only on 

crash frequency, which are often based on FRA inventory database (Austin and Carson, 2002; 

Guadamuz-Flores and Aguero-Valverde, 2017; Heydari et al., 2018; Heydari and Fu, 2015; Hu 

et al., 2012; Hu and Lin, 2012; Khattak et al., 2012b; Khattak and Luo, 2011; Lee et al., 2004; 

Lu and Tolliver, 2016; Medina and Benekohal, 2015; Millegan et al., 2009; Oh et al., 2006; 
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Saccomanno et al., 2007; Saccomanno and Lai, 2005; Yan et al., 2010), or on crash severity 

modeling, which are often based on historical FRA accident/incident database (Eluru et al., 2012; 

W. Fan et al., 2015; Ghomi et al., 2016; Haleem & Gan, 2015; W. Hao & Daniel, 2014, 2016, 

2013; S.-R. Hu et al., 2010; Kang & Khattak, 2017; Liu & Khattak, 2017; C. Ma et al., 2018; 

Savolainen et al., 2011; Zhao et al., 2018; Zhao & Khattak, 2015).  

To measure and predict crash frequency and severity simultaneously is critical for 

transportation decision makers seeking to improve safety at grade crossings, so they can identify 

and investigate the common factors affecting both crash frequency and severity changes. 

Separate crash frequency or severity predictive methods can be utilized to identify which 

contributes impact on one of the crossings’ crash frequency or crash severity levels; however, it 

has failed to address consistent identified factors. For example, policy-reported surface 

conditions are often available for severity models but not crash occurrence models. Moreover, 

the expected crash severity likelihoods should be conditional probabilities considering the crash 

occurring according to the identified unique set of factors and not transferable for decision 

makers to quantify the absolute likelihood for a specific collision severity level. For instance, 

separate predictive method is able to estimate 65% crash occurrence likelihood with a specific 

set of factors, say A to E, and 20% crash occurrence with level one crash severity, 30% level two 

crash severity and 15% level three severity with another set of factors, say D to H. It is clear that 

because of F, G, and H factors, the estimated likelihoods are not transferable among the 

aforementioned models.  

Transportation decision makers need an integrated available information to make safety 

improvement decisions considering both crossings’ crash occurrence and crash severities. The 

same prediction model which is bale to quantify both crash frequency and severity with a unique 
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set of factors is needed so that unmeasurable variance can be considered in the same error term 

and the estimated probabilities can be directly used by safety decision makers. Moreover, a 

straight-forward and integrated one-step forecasting model that considers both crash frequency 

and severity likelihood can be the base of the direct hazard ranking technique considering both 

crash frequency and severity likelihood to rank crossings and locations. Few studies have 

explored incorporating crash frequency and crash severity in the same prediction model. 

1.8. Research Focus Area 

Transportation agencies need a precise forecasting model which is able to predict crash 

occurrence and severity likelihood simultaneously. Many previous studies have focused only on 

crash frequency or on crash severity analysis, and research projects are often based on historical 

crash reports from FRA databases. Predicting crash frequency and severity simultaneously has 

practical importance for safety improvement agencies to quantify the critical factors that impact 

both crash frequency and severity. This study proposed a novel methodology and a statistical 

approach for HRGC crash analysis. The novel approach is competing risk algorithm and the 

approach is Cox proportional hazard regression. Moreover, model interpretive capabilities are 

measured by using crash severity analysis through the application of FRA grade crossings 

datasets and spatial analysis. 

Moreover, there has been little research on the effectiveness of grade crossings’ 

geometric factors on their safety outputs. Consequently, in this study, we evaluate the effects of 

grade crossings’ geometric factors on crash occurrence and severity level changes. Four critical 

crossings’ geometric parameters are investigated and measured at 3,194 public grade crossings in 

North Dakota. These four geometric features of crossings are: 1) acute crossing angle, 2) number 

of tracks, 3) the roadway distance between each crossing and the nearby intersection, and 4) 
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number of highway traffic lanes. It should be stressed that distance to the nearest intersections 

and grade crossing angles are map-based calculations drawn from geographic information 

systems (GIS). 

Similarly to the geometric analysis, a few studies have investigated countermeasures’ 

effects on crash occurrence and severity levels by using the same model and the same database 

(Abdel-Aty & Nawathe, 2006; A. Keramati, Lu, Tolliver, & Wang, 2020; X. Ye, Pendyala, 

Shankar, & Konduri, 2013; Zalinger, Rogers, & Johri, 1977). Consequently, in this study, the 

CRM approach also is used because of its ability to estimate countermeasures’ effects on crash 

occurrence and severity likelihood simultaneously by estimating their marginal effect and 

instantaneous risk. 

In addition to forecasting models, transportation agencies need a prioritization system to 

classify crossings’ risk level based on their estimated crash frequency and crash severity 

simultaneously. Subsequently, with the hazard-ranking approach which considers crossings’ 

crash severity and frequency outputs, agencies are able to ensure that federal and state funds for 

HRGCs safety improvement projects are spent at the crossings that are considered the most in 

need of safety improvement. In this study, two hazard-ranking models are proposed based on the 

safety output of CRM model. The first hazard-ranking approach is accident prediction model 

which ranks grade crossings considering the crossings’ crash frequency likelihood measured by 

CRM safety output. The second hazard-ranking model type is a hybrid accident prediction 

model/hazard index which measures the priority index for each crossing based on the calculated 

crash severity likelihood by applying the analytic hierarchy process (AHP) technique. Finally, 

crossings’ risk levels are identified according to their crash likelihood and severity ranks by 

using both spatial analysis and the risk matrix techniques.   
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CHAPTER 2. STUDY DATA PREPARATION 

This study uses three main data resources for this research: 1) North Dakota (ND) 

roadway network, railway network, roadway intersections, and HRGCs from North Dakota 

Department of Transportation (ND GIS Hub Data Portal); 2) highway-rail grade crossing 

accident/incident data from the Federal Railway Administration (FRA); and 3) the highway-rail 

grade crossing inventory from FRA. The final dataset includes all reported crashes/incidents 

records and their related information, recent and historical (from 1990 to 2018) inventory 

information for each crossing and measured geometric factors relative to the connecting highway 

and railways during the research timespan in North Dakota.  

29 years of crash data were extracted from the database of public highway-rail grade 

crossing accidents/incidents. This database includes all reported crashes/incidents occurred at 

HRGCs which is reported from – FRA Form 6180.57. The form provides details about individual 

crashes at HRGCs, such as highway user information, crossing control devices (of the day), train 

speeds, and highway vehicle speeds. In particular, highway-rail grade crossing 

accidents/incidents database provides the frequency of fatalities, injuries, and vehicle damages 

costs, which based on these information, the crash severity levels of fatal, injury and, Property 

Damage Only (PDO) associated with each crash record were extracted to use in the study 

analysis respectively. To obtain more crossing-related information such as type of train service, 

time detection, maximum train speed, total daylight and nightlight thru trains, etc. related to both 

HRGCs with or without crash records in 29-year time span, this study linked the highway-rail 

grade crossing inventory database with the accident/incident database. FRA inventory database 

includes both the current and historical statuses of North Dakota state grade crossings. In 

addition to using the crossing identification number (Crossing ID) this study also used the time 
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of crash occurrence to link the historical information associated with each grade crossing. 

Moreover, historical information of both grade crossings with or without crash/accident records 

in 29 years is kept in the study database.   

By using NDHUB portal (ND GIS Hub Data Portal) GIS data of roadway network, 

railway network, roadway intersections, and crossings, two geometric features of each crossing 

including distance to nearest intersecting roadway and the smallest crossing angle were estimated 

and were linked to the other two databases through the crossing identification number. 

Therefore, the final study database provides 29-year information of each crossing including crash 

severity level and related time occurrence, and crossing information such as train service, time 

detection, maximum train speed, total daylight and nightlight thru trains, etc. Since crossings’ 

information in highway-rail grade crossing inventory dataset is not updated for all 29 years, a 

large amount of missing data was appeared in the study database. Therefore, because of 

estimation efficiency improvement, avoiding error interpretation, and preserving the population 

size of available grade crossing crashes, this study used rigorous data imputation methods for 

handling missing data (Orchard and Woodbury, 1972). 

After cleaning the data, out of 66,166 crossing records in inventory database, the final 

research database includes features and information for 3,194 unique grade crossings including 

475 crash records and 2,835 no crash records (total 3,310 records) for ND public HRGCs from 

1990 to 2018 with three crash severity levels: PDO, injury, and fatal. Table 1 shows all the 

contributors and variables used in the study. The majority of grade crossings experienced no 

crash (86%) and the proportion of PDO, Injury, and fatal crashes are 8% (261 accidents), 4% 

(147 accidents), and 2% (67 accidents) respectively. The main variables inputs are selected based 

on data availability, and intuitive judgement. Finally, the model filters key contributors with their 
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significance based on model’s statistical significance test. In this study, not only the grade 

crossings accident information is updated through 29-year analysis periods for each HRGC, but 

all HRGCs’ inventory information for 29 years are considered for changes. Table 1 summarizes 

all study variables’ values for 29 years. Since variables’ values might change every year, Table 1 

indicates their Min and Max annual values for the 29-year study period.   
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Table 1. Summary Statistics of Considered Variables in the Study 

Variable Categorical Variable Values 
Min 

Freq/Value 

Max 

Freq/Value 

Crash Severity   
 No Crash 3163 3192 
 PDO 2 18 
 Injury 0 11 

 Fatal Crash 0 6 
Type of Train Service   

 Freight 2718 2807 

 Intercity Passenger 387 476 

Train Detection System   

 None 2398 2402 

 Constant Warning Time(CWT) 375 378 

 Motion Detection (MD) 42 43 

 PTC 1 1 
 DC 374 376 

Commercial Power (Is Commercial Power Available?)   

 Available 2107 2107 

 Not Available 1087 1087 
Roadway Paved Condition   

 Paved 563 563 

 Not Paved 2631 2631 
Crossing Control Types   

 Gate  4 22 
 Gate+ Audible  6 92 

 Crossbucks + Stop Sign 44 78 

 Gates + StandardFLS+ Audible+ Stop Signs 2 14 

 Gates + StandardFLS + Audible 27 184 
 Crossbucks Only 2451 2676 
 Gates+CantileverFLS+Audible 2 28 
 CantileverFLS+StandardFLS+Audible 2 6 

 Gates+CantileverFLS+StandardFLS 1 9 

 Gates+CantileverFLS+StandardFLS+Audibl

e 
2 21 

Total Day Time Through Trains 0 35 

Total Night Time Through Trains 0 33 

Total Switching Trains 0 12 
Maximum Train Speed 5 79 
Annual Average Daily Traffic 5 25600 
Percent of Trucks 1 22.67 
Distance to the Nearest Intersections 0.78 2502 

Crossing Angles 7.9 90 

Number of Traffic Lanes 1 4 

Number of Main Tracks 1 3 
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2.1. Geometric Factor Measurements 

Two crossing geometric features, the number of traffic (roadway) lanes and the number of 

main tracks are used directly from FRA’s crossing inventory database. The other two numerical 

geometric features used in this study are measured with geoprocessing methods and geographical 

information system (GIS) technique. 

In the first phase of measurement process, North Dakota (ND) roadway and railway 

networks, roadway intersections, and HRGCs shape files are provided from the ND GIS hub portal 

(NDHUB) to calculate the numerical geometric measures of each grade crossing. As shown in 

Figure 3, all GIS spatial features are adjusted and digitized to spatially align and match with 

Google street features to provide accurate and overlaid coverage data before performing the 

geoprocessing estimation. Figure 3 indicates the accurate coverage map based on the four 

geometric features estimation. The rail track, roadway, roadway intersections, and grade crossings’ 

locations all align accurately with the Google map associated with the area. Figure 3 also reveals 

that the original provided NDHUB grade crossing and rail track locations are not spatially matched 

with the rest of the geo-features. Instead, the spatial crossing and rail track locations are based on 

aligned digitized crossing and rail track locations. 

Distances between crossings to their nearby roadway intersections are measured by first 

finding the nearest road intersection location to each crossing and then calculating the distance 

between the crossing and the intersection (ArcGIS, 2019). The measurement of smallest crossing 

angles for all crossings is shown in Figure 4. It involves three steps: 

 1) Generating a one-meter buffer around each grade crossing. 

 2) Estimating the geo-coordinates of the road/rail intersected spot within the buffer and.  



www.manaraa.com

 

21 

3) Estimating the smallest angle considering all coordinates. Equation (1) represents the 

calculation of the acute (smallest) crossing angle.  

 

Figure 3. Integrated and Overlaid Coverage with Geometric Feature Measurements 

𝜃 =  
sin−1(

|(𝑑𝑥 ∧ 𝑑𝑦
𝑎)−(𝑑𝑦 ∧ 𝑑𝑥

𝑎)|

𝑟×𝑟𝑎
)

𝜋×180
                                           (Equation 1) 

Where, 𝑑𝑥 denotes the difference between x-coordinates of crossing and buffer intersection 

with railway, 𝑑𝑦 indicates the difference between y-coordinates of crossing and buffer intersection 

with railway, 𝑑𝑥
𝑎 represents the difference between x-coordinates of crossing and buffer 

intersection with roadway, 𝑑𝑦
𝑎 shows the difference between y-coordinates of crossing and buffer 

intersection with roadway,𝑟 and 𝑟𝑎 are distances between crossing to railway-buffer and roadway-

buffer intersections respectively. 
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Figure 4. Crossing Angle Estimation 

2.2. Handling Missing Data 

2.2.1. Countermeasures Missing Data  

Previous studies have indicated that crossing devices are significant contributors to the 

likelihood of HRGCs’ crashes and their consequences. Countermeasures may change over the 

years, but updated information about crossing control device(s) in highway-rail grade crossing 

inventory dataset is not provided for each year from 1990 to 2018. Consequently, control devices 

missing data was appeared in the study database after joining the accident/incident data set and 

inventory dataset. 

According to FRA Form 6180.57, in the accident/incident dataset, each crossing warning 

device is identified as a specific code. For example, gates specific code is “01”, cantilever 

flashing light is “02”, standard flashing light is “03”, etc. If a crossing has a combination of 
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warning devices, those codes will be concatenated where each warning is two positions long 

with no commas separating the crossing types. For instance, if a crossing has both flashing lights 

and crossbucks, the level of crossing device type (CDT) as a categorical contributor associated 

with that crossing is equal to 0307. Such information about the control device and its 

combinations are available for crossing with crash record(s). Consequently, to generate such 

contributors for crossings with no accident between 1990 and 2018, the crossing history dataset 

which is part of FRA inventory dataset is used. 

Crossings’ historical inventory dataset includes the quantity of warning devices from 

1974 to 2018 defined as separated contributors; for example, Xbuck and stop sign columns 

define the number of cross bucks and stop signs at each crossing, respectively. To generate the 

same variable as CDT in accident/incident dataset by using inventory dataset, the device 

quantities were replaced by device codes. For example, if a record’s Xbuck column includes a 

value which is equal or greater than one, that value will be replaced by crossbucks code which is 

“07”. Then, the device codes in each column are concentrated to indicate the final warning 

device combination for the record. In the following, the process of countermeasures data 

preparation is explained using two records of inventory data set as an example.   

Table 2. Inventory Dataset Format 

Crossing ID Xbuck  Stop sign Last update 

062011J 2 1 1994 

062011J 2 0 1997 

Table 2 indicates the inventory dataset format to represent 2-year update of the number of 

crossbucks (Xbuck), and stop sign for a crossing with “062011J” identification number. Table 2 

represents that crossing “062011J” was controlled with two crossbucks and one stop sign in 

1994. However, the new update of inventory dataset indicates that the crossing was controlled 
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with just two crossbucks and stop sign was eliminated in 1997. To convert the crossing’s 

quantity information in Table 2 to crossing device type (CDT) format, the crossing quantity 

information is replaced with crossing code type as indicated in Table 3. Note that according to 

the FRA Form 6180.57, the codes for crossbucks and stop sign control devices are “07” and 

“08”, respectively.  

Table 3. Converting Control Device Quantity to Control Device Code 

Crossing ID Xbuck  Stop sign Last update 

062011J 07 08 1994 

062011J 07 0 1997 

To indicate the crossing device combination in 1994 and 1994, and generating the CDT 

contributor as it is generated in the accident/incident data set, the contents of two columns of 

Xbuck and stop sign are concatenated, and the result is a new contributor of CDT in Table 4. 

Table 4. Generating Crossing Device Type (CDT) Contributor  

Crossing ID Crossing Device Type (CDT) Last update 

062011J 0708 1994 

062011J 07 1997 

Table 5 indicates a pivot table based on Table 4 to indicate more details about “062011J” 

crossing and reveal missing countermeasure information from 1994 to 1997. The same pivot 

table technique was used for the 3,194 crossings in the complete study dataset which includes 28 

control device combinations (e.g., 0708) from 1990 to 2018. CDT-Year variable in Table 5 

indicates the crossing device type in that year. NAs in Table 5 clearly expresses that CDTs for 

the years 1995 and 1996 are missing data because of the lack of annual inventory dataset update.    
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Table 5. Creating Crossing Device Type (CDT) Contributor  

Crossing ID CDT-1994 CDT-1995 CDT-1996 CDT-1997 

062011J 0708 NA NA 07 

In this study, to deal with the above-mentioned missing data (“NAs”), “NAs” are 

replaced with the first available CDT information belonging to the previous year(s). 

Accordingly, Table 6 indicates the final dataset without control device missing data for records 

of grade crossing “062011J”. To handle countermeasure missing data of this study dataset, the 

similar data transformation process which converts Table 2 to Table 6 was applied for all 3,194 

study public grade crossings for their 29 years’ records from 1990 to 2018. As mentioned before, 

crossings with crash records have CDT information because this information is provided in FRA 

accident/incident dataset. However, the proposed missing data analysis was applied for all study 

grade crossings with or without crash record(s) to compare the results suggested by the proposed 

process and using the inventory dataset with the information provided according to the FRA 

accident/incident dataset. The results indicated that all provided CDT information by the 

proposed process was matched with the reported CDT information in the accident/incident 

dataset.  

Table 6. Creating Crossing Device Type (CDT) Contributor  

Crossing ID CDT-1994 CDT-1995 CDT-1996 CDT-1997 

062011J 0708 0708 0708 07 

2.2.2. Data Imputation 

Crash reports provided by investigators might be incomplete because of several reasons, 

such as errors or lack of entry. As mentioned in the previous section, FRA inventory data does not 



www.manaraa.com

 

26 

include the annual historical crossing information update from1990 to 2018, and contributors’ 

records associated with several years are not available. 

If there are a few of missing variables in observations or the missing values are randomly 

distributed, the observations can be removed. Otherwise, if e.g., the missing data are non-random or 

with large amounts, removing them may cause inefficient resulting in estimation and interpretation 

errors (Gelman and Hill, 2006). To improve prediction efficiency, avoid errors in interpretation, and 

also preserve the population size of available grade crossing crashes, this study applied rigorous 

data imputation methods for handling missing data (Liu et al., 2015; Orchard and Woodbury, 1972).   

Having explained in “Data acquisition” section, 3194 active HRGCs in 29 years in North 

Dakota was selected as study sample. Consequently, considering crossings’ annual information, the 

total number of records before the final transformation (input of Cox regression model) is 92,626 

(3194×29). In this study, after joining inventory and accident/incident datasets, eight contributors 

needed imputation: type of train service, type of train detection, total day time through trains, total 

night time through trains, total switching trains, maximum train speed, annual average daily traffic 

(AADT), and percent trucks. The type train detection (nominal variable), and type of train service 

(nominal variable) missing values are 0.19%, and 31.26% respectively. The rest of a mentioned 

variables have 76.03% missing values. Multivariate imputation using chained equations (MICE) 

method is used to impute missing values considering several variables (Raghunathan et al., 2001; 

Royston, 2009; Rubin, 2004). The MIC basic idea is to impute missing values of multiple variables 

iteratively via a sequential series of univariate imputation models. More information and 

mathematical formulation of MICE can be found in (Liu et al., 2015; StataCorp, 2013).  

One of the MICE advantageous is the simultaneous imputation of variables with different 

types by using the appropriate univariate imputation model specifications such as polytomous and 
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predictive mean matching method (PMM). Regardless of the variables without any missing values, 

the most observed variable is train detection (only 0.19 % missing value) which should be imputed 

first, and the next variable obviously should be the type of train service. Since these two variables 

are unordered categorical variables, a polytomous regression imputation model was applied. Since 

the rests of variables with more missing values are numerical variables, the PMM was applied.  

After data imputation process, all variables (contributors) have complete information for 92,626 

records which need to be prepared before using in competing risk model.   

2.3. Data Transformation 

The database with 92,626 records which was imputed in the previous section should be 

prepared to use in competing risk model and its format must be converted to time-to-crash 

format. Time-to-crash dataset (time-to-event dataset in survival analysis) is a database which 

provides information about each crossing’s record including 1) crash occurrence, 2) crash 

severity level (PDO, injury, fatal, no injury) 3) crash occurrence time (year in this study) and 4) 

crossing’s contributors (independent variables) associated with the record year. 

The first step to generate time-to-crash data is defining a column (variable) in the dataset 

indicating the crash occurrence year (variable “time”). The value of “time” variable for crossings 

with no crash record is equal to the last year of the study period which is year 29 (time=29). The 

second step is defining a binary variable “status” which is equal to 1 in the situation of crash 

occurrence, otherwise 0. The third step is defining a nominal variable of “severity” with three 

levels of 1,2, and 3 which represents three severity levels of PDO, injury, and fatal, respectively. 

Consequently, a crossing record with status=1, severity=2, and time =2010, represents that the 

crossing had an injury crash in the year 2010. All three variables of “time”, “status”, and 
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“severity” are considered as dependent (respond) variables of the competing risk algorithm and 

Cox regression model.   

Model contributors or dependent covariates are divided into four groups including 1) 

engineering contributors including distance to the nearest intersection, smallest crossing angle, 

number of traffic lines, and number of main tracks which cannot be changed over time, 2) 

continuous variables with different values over the time such as total daylight thru trains, and 

maximum train speed, and 3) categorical variables with different levels over the time including 

train detection and type of train service. The first group of variables are transferred to the time-

to-crash dataset with their original value. However, in terms of the second group, the value 

which is defined for each crossing crash record is equal to their average values associated with 

the years between the year after the last crash occurrence and a year of crash occurrence 

associated with that record. In terms of the last group transformation, variable values at the time 

(year) of crash occurrence were transferred. Same policies were applied to transfer contributors’ 

value for no crash records. For example, the average of the second group variables’ value for 29 

years (because there is no range of years between two crash occurrence times), and the third 

group variables’ values in year 2018 (year 29) were transferred.  

2.4. Data Description  

In this study, a crossing’s crash severity level is identified based on the total number of 

killed (TOTKLD) and injury (TOTINJ) as reported by railroad on F6180.57. The total number of 

killed at a grade crossing includes number of users, railroad employees, and train passengers killed 

at the same crossing. Subsequently, the total number of injury at a grade crossing includes number 

of users, railroad employees, and train passengers injured at the same crossing.  
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If a grade crossing’s accident record(s) indicates one or more than one total number of killed 

(TOTKLD>0), that crash record will be identified as fatal crash record (even in the condition of 

TOTINJ>0). Correspondingly, a crossing record is identified as injury crash record, if the record 

indicates the total number of injured equal to one or more than one (TOTINJ>0) with total number 

of killed equals to zero(TOTKLD=0). Clearly, a crossing record with both total number of killed 

and injured equal to zero is identified as PDO (Property Damage Record) crash record. The variable 

represent severity level of a crossing record is “severity”.  

As mentioned in previous section, three variables of “severity”, “time”, and “status” are 

considered as dependent or target variables of the model, and the rest of the variables described in 

Table 1 are independent variables. Although most of the variables’ name or title in Table 1 describe 

their function clearly, Table 7 provides more information about part of independent variables’ 

description.   
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Table 7. Data Description 

Variable Description 

Type of Train Service 
Describes the type of rail service that uses the 

crossing. Freight trains or intercity passenger trains  

Train Detection System 

Type of train detection equipment used to activate 

the warning system at the crossing for movements 

on the main track(s) 

Roadway Paved Condition Is highway paved or not? 1=yes, 0=no 

Total Day Time Through Trains Day through-train movements 

Total Night Time Through Trains Night through-train movements 

Total Switching Trains Day and night switching-train movements 

Maximum Train Speed 

The highest maximum timetable speed in miles per 

hour for any type of train movement over the 

crossing 

Percent of Trucks 
The estimated percentage (0–99%) of trucks in the 

traffic stream 

Distance to the Nearest Intersections 
The distance between a crossing to its nearest 

highway/roadway intersection (Meter) 

Crossing Angles 
Describes the smallest angle between the roadway 

and the track 

Number of Traffic Lanes 
The number of through traffic lanes crossing the 

track 

Number of Main Tracks 
Describes the number of main railway tracks that 

cross the roadway 
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CHAPTER 3. APPLYING COMPETING RISK MODEL IN HIGHWAY RAIL GRADE 

CROSSING ACCIDENT ANALYSIS 

3.1. Background and Literature Review  

Studies on grade crossing safety have focused either on crash frequency or on crash 

severity. Due to the discrete, random, and non-negative nature of accident data, generalized liner 

models (GLMs) have been the most common approach in crash frequency statistical modeling. 

For example, Heydari and Fu (2015) proposed a poisson weibull model. Other statistical models 

(Jinsun Lee et al., 2004; Lu & Tolliver, 2016; Oh et al., 2006; Z. Ye et al., 2018) including zero 

inflated, hurdle, and generalized event count models were adopted to address data issues such as 

the excess number of zero collisions and over/under dispersions. Previous studies (Iranitalab & 

Khattak, 2017; D. Lee, Warner, & Morgan, 2019; Yang, Trudel, & Liu, 2017; Zhao et al., 2018) 

also used data mining and machine learning techniques such as the hierarchical tree-based 

regression technique (Yan et al., 2010), neural network (Abdel-Aty & Keller, 2005; Zheng et al., 

2019), and random forests (Zhou, Lu, Zheng, Tolliver, & Keramati, 2020) to forecast crash 

frequencies or severities at grade crossings. Heydari et al. (2018) proposed a spatial-statistical 

approach to compare different geographic areas in terms of pre-specified safety performance 

which is able to predict crash likelihood of a given type.  

There are several studies have been focusing on modeling crash severity outcomes. 

Several studies have found discrete choice models to be qualified because of the discrete nature 

of crash severity levels. Subsequently, Hao and Daniel (2013) and Abdel-Aty and Keller (2005) 

used the ordered probit model in the United States to predict crash severity while they considered 

the crash severity levels naturally ordered. Hao and Daniel (2014) proposed an ordered probit 

model while they considered traffic control devices at HRGCs. Eluru et al (2012) proposed a 
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latent ordered response model using 10 years of grade crossing accident data in the Unites States. 

Hu et al. (2010) used a generalized logit model to measure contributors effecting crash severity 

at Taiwan’s railroad grade crossings. Recently, Zhao et al. (2018) used binary logit models and a 

generalized linear mixed model to investigate the relationship between potential contributors and 

pedestrian injury severity levels, applying 10 years of data at grade crossings in the United 

States.  

The above mentioned approaches have shed light on the modeling and understanding of 

crash frequency and severity expected changes separately. However, to forecast crash frequency 

and severity outcomes simultaneously, agencies need to account for the common factors 

affecting crash frequency and severities based on a unique dataset. Unaccounted covariates 

affecting crash frequency and severity variations will be considered for in error terms for each 

separate models. However, these error terms are possibly interrelated because they are associated 

with the same concerns. Abdel-Aty and Nawathe (2006) presented a two-step approach to 

quantify crash frequency based on simulated geometric and traffic exposure data and then 

estimate crash severity by using the neural network technique. Zalinger et al., (1977) developed 

an integrated hazard regression model that considered both the crash frequency and severity. 

However, in the final version of their developed model, both crash frequency and severity are 

treated as collision history and only the number of accidents is selected as the hazard. Ye et al. 

(2013) proposed a model which only considers crash frequencies by collision types 

simultaneously using accident data rather than inventory data. 

In this chapter, a modeling approach, the competing risk method, is developed and 

proposed for grade crossing accident safety analysis. This method has been applied commonly in 

the medical field. However, it has not been used in safety analysis. Model’s interpretive 
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capabilities in crash frequency and severity are investigated simultaneously. Moreover, the 

contributors’ effects on the crash rate and severity outcomes and their long-term cumulative 

effects over 29 years are quantified. 

3.2. Methodology 

The competing risk algorithm is a specific sub-branch of survival analysis and its 

structure is designed to quantify the marginal probability of incidence outcomes in the possibility 

of more than one cause of failure. This method is widely used in medical and bioscience research 

(P. K. Andersen, Hansen, & Keiding, 1991; Fiocco, Putter, Van de Velde, & Van Houwelingen, 

2006; Fiocco, Putter, & Van Houwelingen, 2005; Geskus, 2000; Geskus et al., 2003; Gooley, 

Leisenring, Crowley, & Storer, 1999; van Rij et al., 1998) to study patient deaths likelihood 

attributable to competing events such as cardiovascular and non-cardiovascular causes. Survival 

analysis is an approach to solve time-to-event problems. Consequently, survival analysis intends 

to calculate the probability of an occurrence of an event of interest before specific time t. In 

transportation safety analysis, the event of interest is accident occurrence. One of the unique 

features of survival data is that not all targets (e.g., crossings) experience the event of interest 

(e.g., crash) by the end of the study period. HRGC accident data has this feature, as well. This 

specific dataset feature is known as censoring. One can see from Figure 5 that the structure of 

competing risk algorithm is matched with transportation crash analysis, where each grade 

crossing is considered as a patient with a crash representing a survival failure and different crash 

severity levels at each crossing are identified as different causes of survival failure (crash 

occurrence). In this study, crash severity outcomes are defined as property damage only (PDO), 

injury, and fatality.  
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Figure 5, safety analysis part, shows the modeling structure with the three crash severity 

levels. The model first state is “no crash” at year one which or 1990 for all crash records. Then, 

during the study period, some crossings experience accident(s). According to the Figure 5, there 

are total 261 PDO crashes, 147 injury crashes, and 67 fatal crashes out of 3,310 crossings’ 

records within the 29-year study period (1990 to 2018). Note, crossings with multiple crashes in 

one year are excluded from the study database.  

Each record in the dataset contains three main variables of statues (D), time (t), crash 

severity level (k) whereby the model (CRM) is able to calculate both crash occurrence and 

severity likelihood. Status (D) is a binary variable which is equal to 1 in the situation of crash 

occurrence, otherwise 0. Considering t as the collision time, model calculates the crash 

occurrence likelihood by using variables D and t. Crash severity variable can be equal to 1, 2, or 

3 representing PDO, injury and fatal severity levels respectively. Therefore, if D associated with 

severity level k is equal to 1 for a specific crossing record at time t, model will calculate the crash 

occurrence likelihood (D=1) with severity level k before time t. If a crossing statues associated 

with all crash severity levels are equal to 0 (D=0) for whole study period (t ∈ [0,29]), crossing is 

considered as censored.  
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Figure 5. Fitting Competing Risk Model with Transportation Safety Problem 

3.2.1. Cause-Specific Hazard Function 

The main parameters of competing risks model are 1) the time of failure T or time of 

crash occurrence 2) the cause of failure of D or crash severity levels (PDO, Injury, and Fatal), 

and 3) a covariate vector Z indicating crossing’s contributors such as type of train service and 

AADT. The cause-specific hazard function which is the fundamental concept in competing risk 

model is indicated in Equation (2). The cause-specific hazard function describes the 

instantaneous rate of crash with severity level K (event failure).  

𝜆𝑘(𝑡|𝑍) =  lim
△𝑡→0

𝑃𝑟𝑜𝑏(𝑡≤𝑇<𝑡+△𝑡,𝐷=𝑘|𝑇≥𝑡,𝑍)

△𝑡
                                    (Equation 2) 

Competing risk model is identified as a multivariate failure time model, because each 

individual subject (patient) is assumed to have a possible failure time for each cause of failure. 

The earliest of these failures is actually observed and the others are latent. If 𝑇̃𝑘 represents the 

time to failure of cause k, only 𝑇 = 𝑚𝑖𝑛{𝑇̃𝑘} and D can be observed while D is an index variable 

indicating which event occurred first. In competing risk models, the event time is right censored 
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if the endpoint of interest has not yet occurred at the end of the observation window. Therefore, 

in crash analysis, the crossings with no accident records during the 29-year analysis period are 

identified as right censored data. This is one of the advantages of this algorithm, as the model is 

bale to consolidate and use all the available data, even the crossings’ information with no 

accident records. Previous research only considered crossings with accident records (Eluru et al., 

2012; Liu & Khattak, 2017; Liu, Khattak, Richards, & Nambisan, 2015). Let 𝑇𝑖 denotes the time 

of crash occurrence for the ith crossing, i=1, … ,n, 𝐷𝑖 indicates its severity level, and 𝐶𝑖 

represents censoring time of crossing i. It can be indicated that 𝑇𝑖 which is actual accident 

occurrence time of crossing i is unobserved and 𝑇𝑖 = 𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖
0) and the event 𝐷𝑖 =

𝐷𝑖𝐼(𝑇𝑖 ≤ 𝐶𝑖) are observed. Consequently, if 𝐷𝑖 = 0,crossing i is identified as censored at time 𝑇𝑖 

(Ishwaran et al., 2014).  

3.2.2. Cox Proportional Hazard Model   

Equation (3) indicates the estimation of the cause-specific hazard of crash severity level 

k, 𝜆𝑘(𝑡|𝑍), for a grade crossing record with covariate vector Z = (Z1,.…, Zp). (Putter, Fiocco, & 

Geskus, 2007). Equation (3) is known as cox proportional hazard model (Cox, 1972).   

𝜆𝑘(𝑡|𝑍) =  𝜆𝑘,0(𝑡)𝑒𝑥𝑝(𝛽𝑘
⊤𝑍)                                          (Equation 3) 

Where 𝑒𝑥𝑝(𝛽𝑘
⊤𝑍) is the estimation of the hazard ratio (HR) of crash and indicates the 

instantaneous risk of crash occurrence with severity level k for a crossing with covariate vector 

Z. In other words, it explains the conditional probability that a grade crossing with the 

contributor vector Z has an accident with severity level k at time t given it is crash-free (event-

free) just before time t. In Equation (3), 𝜆𝑘,0(𝑡) indicates the baseline cause-specific hazard of 

severity level k, and 𝛽𝑘  shows the calculated effects of contributors on crash with severity level 
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k. The baseline hazard of severity level k is quantified by the Breslow estimator which is shown  

by Equation (4) (De Wreede et al., 2010): 

∆𝐴̃𝑘(𝑡, 𝛽̂) =  
∆𝑁𝑘(𝑡)

𝑆𝑘
(0)

(𝛽̂,𝑡)
                                          (Equation 4) 

Where, 𝛽̂ is the maximum likelihood estimator of 𝛽, and ∆𝑁𝑘(𝑡) represents the total number of 

crash records with severity level k at t, and 𝑆𝑘
(0)

(𝛽̂, 𝑡) denotes the number of records at risk. The 

term 𝑆𝑘
(0)

 shows the weighted risk set and can be calculated in Equation (5):  

𝑆𝑘
(0)(𝛽, 𝑡) =  ∑ exp (𝛽⊤𝑛

𝑖=1 𝑍𝑘𝑖(𝑡))𝑌𝑘𝑖(𝑡)                         (Equation 5) 

Where, 𝑌𝑘𝑖(𝑡) indicates the at-risk process, i.e. 𝑌𝑘𝑖(𝑡)= 1 if the crossing’s record i is at the risk of 

severity level k at time t-, the time point is just before time t. Note, to calculate the covariates 

effect on crash frequency likelihood, the ∆𝑁𝑘(𝑡) in equation (4) is defined as the number of crash 

records with any severity level.  

The cause-specific function assumes independent censoring in estimating HR and 

coefficients. For example, when the event of interest is a crossing’s PDO crash, crossings with 

other severe crashes (injury and fatality) will be considered as censored observations. In other 

words, a grade crossing coded as PDO crash failure at time t is no longer at risk of severe crashes 

such ad injury or fatal crashes at time t and will be treated as a censored observation (Keramati 

et. al., 2020). Testing whether a crossing has PDO crashes, might have injury or fatal crashes if 

the crossing did not have PDO crash is complicated, because the possible injury/fatal crashes 

occurrence is unobservable for the crossings that actually experienced PDO crash. However, in 

safety applications, the dependency between competing risks should exist. In other words, a 

crossing experiencing crash with a specific severity level might experience the crash with other 

severity levels.  
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3.2.3. Cumulative Incidence Function  

Although, outputs resulting from cause-specific hazard functions can quantify the 

instantaneous risk of crash occurrence and crash severity at crossings, the assumption of 

independent censoring in Cox model causes separately estimating of crash rate for each crash 

severity level. However, Gray (1988) indicates that the probability of event occurrence in a 

specific range of time depends on the cause-specific hazards of other events. Consequently, to 

integrate the calculation of competing event frequency (crash occurrence at each severity level in 

this study safety analysis), and to calculate their marginal effect, the cumulative incident function 

(CIF) as another main output of CRM is adopted to solve HRGC crash analysis problem. 

The integral of the cause-specific density (𝜆𝑘(𝑡)), represents the cumulative incidence 

function (CIF) of crash severity level k. CIF is the probability of crash occurrence with severity 

level k before time t. CIF can be expressed in terms of cause-specific hazard in Equation (6):  

𝐶𝐼𝐹𝑘(𝑡|𝑍) =  ∫ 𝜆𝑘(𝑡|𝑍)𝑆(𝑡|𝑍)𝑑𝑡
𝑡

0
= 𝑝𝑟𝑜𝑏(𝑇 ≤ 𝑡𝑗 , 𝐷 = 𝑘)                  (Equation 6) 

Where the overall survival probability S(t) calculates the overall probability of not having failed 

from any cause at time t. In crash analysis, it estimates the overall probability of not having crash 

with any severity level at time t. Equation (7) expresses the calculation of S(t) at t without taking 

into account the crash severity levels which is calculated by the Kaplan-Meirer estimator (Putter 

et al., 2007): 

𝑆̂(𝑡) =  ∏ (1 −
𝑑𝑗

𝑛𝑗
)𝑗: 𝑡𝑗 ≤𝑡                                           (Equation 7) 

In the above equation, let 0 < t1 < t2 <…< tn be the ordered distinct collision time. Given dkj, the 

number of records with severity level k crash at tj, then 𝑑𝑗 = ∑ 𝑑𝑘𝑗
𝐾
𝑘=1  calculates the total 

number of accidents at tj. nj denotes the number of records at risk. It represents the number of 

records which are in follow-up situation and have not experienced a crash by the time tj. The 
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discretized format of cause-specific hazard of Equation (2) can be expressed as Equation (8) 

(Putter et al., 2007):  

𝜆𝑘(𝑡𝑗) = 𝑃𝑟𝑜𝑏(𝑇 = 𝑡𝑗 , 𝐷 = 𝑘|𝑇 > 𝑡𝑗−1)                             (Equation 8) 

Where 𝜆𝑘(𝑡𝑗) can be calculated by 𝜆̂𝑘(𝑡𝑗) =  
𝑑𝑘𝑗

𝑛𝑗
 which shows the proportion of records at the 

risk of collision occurrence with severity level k. To simplify and quantify the effect of 

covariates on the cumulative probability, Equation (7) can also be written down as Equation (9) 

considering the crash with severity level k.  

𝑆̂(𝑡|𝑍) =  ∏ (1 − ∑ 𝜆̂𝑘(𝑡𝑗|𝑍)𝑘
𝑘=1 )𝑗: 𝑡𝑗 ≤𝑡                              (Equation 9) 

Finally, Equation (10) expresses the estimator of the cumulative incidence function (CIF) 

which explains the cumulative likelihood of crash occurrence with severity level k: 

𝐶𝐼𝐹̂𝑘(𝑡|𝑍) =  ∏ 𝑆̂(𝑡𝑗|𝑍) (
𝑑𝑘𝑗

𝑛𝑗
)𝑗: 𝑡𝑗 ≤𝑡                                 (Equation 10) 

Equation (11) indicates that the cumulative incidence function (CIF) of crash occurrence is equal 

to the sum of CIF related to each crash severity level.  

𝐶𝐼𝐹𝑐(𝑡|𝑍) = ∑ 𝐶𝐼𝐹𝑘(𝑡|𝑍)3
𝑘=1                                     (Equation 11) 

3.3. Results Analysis 

3.3.1. Coefficient Estimation and Hazard Ratio Analysis   

Table 8 indicates the calculated contributors’ coefficient (Coe) and hazard ratio (HR) 

associated with crash rate, and each severity level of PDO, Injury, and Fatal. In Table 8 and other 

tables in this study, “*”, “**”, and “***” symbols denote whether the covariate (contributor) is 

significant at 90%, 95%, and 99% confidence level, respectively. It should be noted that the 

model output related to countermeasures and geometric factors will be expressed and explained 

in detail in the next chapters. Equation (3) expresses the estimation of coefficient (𝛽𝑘  ) and 
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hazard ratio ( 𝑒𝑥𝑝(𝛽𝑘
⊤𝑍) ). In terms of categorical variables including nominal and ordinal, the 

estimated HR is equal to relative risk of crossing with that contributor’s value-level compared to 

the reference level of that contributor. If a contributor is continuous, estimated HR denotes the 

relative independent risk associated with a one-unit variation in covariate (Logan, Zhang, & 

Klein, 2006). The coefficient of Cox proportional hazard model represents the magnitude of the 

corresponding change in the cause-specific hazard function attributable to a one-unit change in 

the covariate value. However, HR denotes the magnitude of the corresponding change in 

accident probability. 

As can be seen in Table 8, positive Coefficient of 0.6 and HR of 1.82 expresses an 82% 

raise in PDO crash probability associated with HRGC with passenger train service in comparison 

with freight train service. On the other hand, negative Coefficient of -0.8 and HR of 0.45 

represents a 55% (1-0.45=0.55) decline in PDO crash probability at crossings with an unpaved 

highway compared to a paved highway. The HR value can be any positive number with an HR of 

1 which shows lack of association (change probability is no different than zero), an HR greater 

than 1 suggesting an increase in risk, and an HR less than 1 suggesting a reduced risk. 

Table 8 indicates that intercity passenger train service (compared to freight train service 

as a reference), constant warning time (CWT) train detection system (no train detection system is 

reference), total daylight through trains, train speed, annual average daily traffic (AADT), and 

number of roadway traffic lanes have positive impacts on crash probability. However, total 

night-time through trains, direct current (DC) train detection system (compared to no train 

detection system), no commercial power available (reference is the availability of commercial 

power), and percentage of truck have negative impact on crash likelihood. Traffic exposure 

factors including total daylight through trains, number of traffic lanes, and train speed, all have 
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positive effect on the crash probability at grade crossing which is matched with previous studies 

results. However, total night-time through trains has negative impact on the crash likelihood at 

grade crossing which is one of the interesting findings in this study. such negative effects might 

be rooted in the operating changes. More night-time idling trains switched to night-time 

operating trains might decrease the traffic of day-time trains and correspondingly may cause a 

decrease in collision probability at crossings. It is expected, since in general, highway/roadway 

traffic is concentrated during the daytime. 

Table 8 results show some contributors significantly impact on certain crash severity 

likelihoods but not on others. The main reason of such results might be under-estimated because 

of the independent censoring assumption cause-specific hazard function. However, Equation (6) 

indicates that estimated CIF is not based on the assumption of competing risks independency. 

Consequently, estimated competing events marginal likelihood considers the competing events 

dependency and has higher accuracy. According to Table 8, night train traffic (total night-time 

through trains) has significant impact on likelihood of all three severity levels. It has a negative 

impact on PDO and injury crash likelihoods, but has a positive impact on likelihood of fatal 

crashes. One possible explanation for this positive impact on fatal crashes and negative impact 

on PDO and injury crashes is that night-time vehicle users are less aware of the traffic control 

devices and existence of a HRGCs because of lower visibility. Another reasonable explanation is 

that night-time drivers are more likely to drive at higher speeds, thus severe crashes like fatal one 

are more likely to occur because of the increase in night-time train traffic (Eluru et al., 2012). 
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Table 8. Calculated Coefficient and Hazard Ratio  

Variable 

PDO Injury Fatal Crash 

Coef 
HR 

(CI:95%) 
Coef 

HR 

(CI:95%) 
Coef 

HR 

(CI:95%) 
Coef 

HR 

(CI:95%) 

Type of Train Service (Reference: Freight) 

       Intercity Passenger 0.6** 
1.82 

(1, 3) 
-0.2 

0.82 

(0.4, 2) 
0.7 

2.01 

(0.8, 5) 
0.4** 

1.50 

(1, 2) 

Train Detection(Reference: None) 

      CWT 0.2 
1.22 

(0.7, 2) 
0.5** 

1.65 

(1, 3) 
1*** 

2.72 

(1, 8) 
0.4*** 

1.50 

(1.2, 2) 

      DC -0.7*** 
0.50 

(0.3, 0.8) 
-0.6 

0.55 

(0.2, 1) 
-2.0 

0.14 

(0.03, 2) 
-0.7*** 

0.5 

(0.3, 0.7) 

Is Commercial Power Available?(Reference: Yes) 

      No -0.1 
0.90 

(0.6, 1) 

-

0.7*** 

0.50 

(0.3, 0.8) 
0.3 

1.35 

(0.80, 2) 
-0.2* 

0.80 

(0.6, 1) 

Is Roadway/Pathway Paved?(Reference: Yes) 

     No -0.8*** 
0.44 

(0.3, 0.7) 
-0.4 

0.67 

(0.4, 1) 
-0.2 

0.82 

(0.4, 2) 
-0.6*** 

0.50 

(0.4, 0.7) 

Total Daylight Through 

Trains 
0.2*** 

1.22 

(1, 1) 
0.1 

1.11 

(1, 1) 
-0.4 

0.67 

(0.4, 1) 
0.2*** 

1.22 

(1.1, 1.3) 

Total Night-time Through 

Trains 
-0.2*** 

0.82 

(0.7, 0.9) 
-0.2* 

0.82 

(0.7, 1) 
0.5* 

1.65 

(0.9, 3) 
-0.1*** 

0.90 

(0.8, 1) 

Total Switching Trains 0.01 
1.01 

(0.8, 1) 
0.03 

1.03 

(0.8, 1) 
0.5** 

1.65 

(1, 3) 
0.03 

1.03 

(0.9, 1.2) 

Maximum Train Speed 0.004 
1 

(1, 1) 
0.05** 

1.05 

(1, 1) 
0.03 

1.03 

(1, 1) 
0.02*** 

1 

(1, 1) 

Annual Average Daily 

Traffic 
0.00009** 

1 

(1, 1) 

0.0000

4 

1 

(1, 1) 

0.000

1 

1 

(1, 1) 
0.00008*** 

1 

(1, 1) 

Percent Trucks -0.08** 
0.92 

(0.9, 1) 

-

0.1*** 

0.90 

(0.8, 1) 
0.04 

1.04 

(0.9, 1) 
-0.09*** 

0.91 

(0.9, 1) 
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Table 9. Ranking Contributors Based on Hazard Ratio  

Variable 
PDO Injury Fatal Crash 

Rank %Impact Rank %Impact Rank %Impact Rank %Impact 

Type of Train Service: 

Intercity Passenger 1 82% 5 18% 2 101% 2 49% 

Train Detection: 

CWT 5 22% 1 65% 1 172% 2 49% 

DC 3 50% 3 45% 3 86% 1 50% 

Is Commercial Power Available? 

No 8 10% 2 50% 6 35% 6 18% 

Is Roadway/Pathway Paved? 

No 

 
2 55% 4 33% 8 18% 3 45% 

Total Daylight Through 

Trains 
6 22% 7 11% 7 33% 5 22% 

Total Night-time 

ThroughTrains 
7 18% 6 18% 4 65% 7 10% 

Total Switching Trains 10 1% 11 3% 5 65% 9 3% 

Maximum Train Speed 11 0.4% 10 5% 10 3% 10 2% 

Annual Average Daily 

Traffic 
14 0.01% 14 0.004% 14 0.01% 13 0.01% 

Percent Trucks 9 8% 9 10% 9 4% 8 9% 
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Moreover, Table 8 shows that a one-unit increase in train speed, injury and fatal crash 

likelihoods increased by 5%, and 3% respectively; but the likelihood of a change in PDO and crash 

occurrence is not significantly different than zero. 

Table 9 indicates the contributors’ importance ranking information based on the estimated 

HR. “%impact” is the estimated instantaneous risk changes associated with contributors’ HR 

(%Impact = |HR-1|x100.); the contributors are ranked based on this value. Results in Table 9 reveal 

that 1) “train service” has the highest impact on PDO, and, 2“train detection” has the highest 

impact on injury crash, fatal crash, and crash occurrence likelihood.  

As explained earlier, the hazard ratio reveals critical risk information regarding the 

contributor’s influence to instantaneous crash and severity likelihood. However, as a result of the 

independent censoring assumption, the significance of the contributors can be under-estimated. 

For instance, the one risk effect such as a PDO crash might reflect the effect of competing risks 

such as an injury or a fatal crash. To accurate analysis of contributors’ effects on hazard ratio and 

long-term crash probabilities and also consider competing characteristics of crash severity levels 

the cumulative-incidence-based effect analysis should be conducted. 

3.3.2. Cumulative Likelihood Estimation  

Hazard ratio is a direct isolated influential indicator to a specific failure event like crash 

occurrence in this study. The isolated influential effect is not able to consider the same 

contributor’s impact on other competing events. Consequently, it causes the underestimating of 

the covariate’s impact when HR estimations are applied for analyzing the marginal likelihood of 

cause-specific events considering the competing nature of multiple causes to the same event of 

interest. In addition, according to Dignam et al. (2012) Such analysis results might be very 

sensitive to different modeling approaches and quantify different contributing effects.  
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Evaluating contributors’ long-term robust influence is one of the advantages that the 

competing risk model can provide. Wolbers et al. (2014) verified and showed that a covariate 

which has not a significant effect on the risk of a competing-event failure based on the results of 

cause-specific hazard function, but it still might indicate a significant impact on cumulative 

incidence function (cumulative risk probability) of the competing event. Subsequently, a 

covariate, which has no direct effect on one specific type of failure event, might still significantly 

effect on the cumulative probability (CIF) of that failure event. The marginal probability of a 

specific failure event can be estimated by its cause-specific probability and the overall 

cumulative survival probability (S(t)). Calculating cumulative probability of the failure events 

depends on HR for both the event of interest (crash occurrence) and the competing events (PDO, 

injury, and fatal crashes) based on the estimation of cumulative incidence function and Equation 

(10). 

In this study, two contributors of “train service” and “train detection” are selected to 

perform the cumulative probability analysis due to the fact that they are ranked as the top impact 

factors for PDO, injury, fatal crashes and crash occurrence likelihood based on Table 9 

information. In addition, the two-sample t-test method is applied to estimate the significance of 

contributors’ effects on the cumulative probability for crash occurrence and each crash severity 

level. 

Predicted cumulative crash probabilities of each crash severity level are calculated based 

on Equation (9), and Equation (10). To quantify the change in predicted cumulative probability 

by changing train service types, two subsamples are generated: one sample with freight train 

service only and the other one with intercity passenger train service only. The rest of the 

contributors’ values are controlled at a fixed level, mode value. Figure 7 shows the 29-year 
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predicted cumulative crash severity and crash occurrence probabilities for “train service” in parts 

a, b, c, and d respectively. In addition, Figure 7 represents the same cumulative probability 

results for the train detection system. 

Figure 6 indicates that the cumulative crash probabilities have an increasing trend over 

time at different rates and with fluctuations. In general, grade crossings with intercity passenger 

train service are more likely to have all severity and crash occurrence risks except for injury risk 

in comparison with the crossings with freight train services. Figure 6 shows that the overall 

increase in cumulative PDO crash probability is faster than the injury and fatal crash probability 

for both types of train service. In addition, Figure 6, part c reveals that the absolute magnitude of 

the increasing rate is also small between the freight and intercity services, but the increased fatal 

probability proportion is almost doubled for HRGCs with intercity passenger train services in 

comparison with HRGCs with freight train services. 

Figure 7 reveals that grade crossings which are equipped with DC systems have reduced 

crash probability for all crashes with all severity levels. However, grade crossings with CWT 

systems are more likely to have crashes including fatal, injury and PDO crash compared to 

crossings with no detection systems (None). It should be noted that the differences in absolute 

probability are all very small and about 0.1%. Figure 7, part c indicates that the fatal crash 

probability is more than doubled (on average 224% over 29 years) for crossings equipped with 

CWT detection system in comparison with crossings without detection system (None). In 

addition, part c shows that grade crossings with DC train detection are less likely (on average 

79% over 29 years) to have fatal crashes compared to the crossings without any automatic 

detection system.  
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Figure 6. Estimated CIF of Crash Severity and Crash Occurrence for Train Service 

The CWT results might be counterintuitive. The application of train detection warning 

systems is warning crossing users of an approaching train through certain automatic train 

detection approaches. In terms of the DC system, the current flows from a battery through a fixed 

rail segment to the coil of a relay. The battery and relay locations define the location of the 

warning-trigger rail segment. The DC approach uses the rail as an energy conductor. When a 
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train enters the track segment, the axles short/shunt circuit which activates the crossing warning 

system to warn crossing users of an approaching train. This approach generates a warning 

according to the track occupation status, which has a fixed predefined distance from the crossing, 

usually between 1500 to 2000 feet.  

The CWT system is a smart technology which is able to identify the speed and location of 

an approaching train. Therefore, it is able to forecast the train arrival time at the grade crossing. 

With the CWT system at a grade crossing, a warning signal is activated to intentionally to 

generate a constant pre-selected warning time which is around 25 seconds. So, for a train with 

lower speed, the distance between the train and the HRGC could be closer than for a faster-

moving train. However, a CWT system cannot calculate a variation in speed accurately which 

causes variability in the actual warning time. For instance, if a CWT system forecasts the time of 

warning-activation for a slow train and then the approaching train accelerates towards to the 

crossing, it will result in a less-than-desired warning time. This might be the main reason that 

crossings with CWT systems are more likely to have collision. 

Table 10 summarizes the two-sample t-test results and the average annual likelihood 

increasing rates over the 29-year analysis period. To apply the two-sample t-test, the average 

annual crash likelihood increasing rates associated with all grade crossings’ records in the study 

database are calculated based on their cumulative incidence. The test is applied for the selected 

categorical covariates for each group level.  
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Figure 7. Estimated CIF of Crash Severity and Crash Occurrence for Train Detection 

Table 10 indicates that on average, PDO crash probability increased about 0.26% each 

year for grade crossings with intercity passenger train service compared to 0.152% for crossings 

with freight train services. On average, the likelihood of PDO crash occurrence at crossings with 

passenger train service increases about 0.108% each year which is around 71% increase in 
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comparison with freight train service category. The applied t-test (Table 10) indicates that the 

train service change is able to significantly impact PDO crash probability at a 99% significance 

level. 

Table 10. Average Crash Probability Change for Train Service and Detection System 

Variables 
PDO% and 

Change 

Injury% and 

Change 

Fatal% and 

Change 

Crash% and 

Change 

Train Service 

Freight 0.15 NA 0.06 NA 0.03 NA 0.247 NA  

Intercity 

Passenger 
0.26 

0.11*** 
0.052*** 

-0.01  

-16% 
0.07*** 

0.033 
0.38*** 

0.13 

53% 71% 100% 

Train Detection 

None 0.152 NA 0.062 NA 0.033 NA 0.25 NA  

CWT 0.18*** 
0.03 

0.11*** 
0.043 

0.11*** 
0.074 

0.39*** 
0.14 

17% 69% 224% 58% 

DC 0.07* 
-0.08 

0.034*** 
-0.028 

-45% 
0.01*** 

-0.03 
0.12*** 

-0.13  

-54% -52% -79% 

On the one hand, Table 8 indicates that grade crossings with intercity passenger service 

did not have a significant influence on instantaneous injury crash risk compared to crossings with 

freight train services regardless of competing risks. On the other hand, grade crossings with 

intercity passenger service were identified as significant to cumulative injury probability (CIF) 

compared to the ones with freight train services when considering competing risks. The similar 

result is observed for CWT detection approach for PDO accidents and for DC approach for 

injury and fatal accidents. As mentioned before, the estimated coefficients and HRs as the 

outputs of cause-specific hazard function are based on the independent censoring assumption. 

Accordingly, cause-specific hazard function outputs are based on estimating each severity level’s 

coefficient and HR separately. 

CIF is able to define whether a specific crossing is at risk of one of the crash severity 

levels (e.g. fatal) might also be at the risk of other crash severity levels (e.g. PDO or injury). In 

other words, CIF output is free of any assumption of events independency. Correspondingly, the 
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significance difference between the Table 10 and Table 8 results is rooted in dependence of 

contributors’ impact on competing events which are severity levels in this research. 

3.3.3. Section Summary 

The competing risk model as a novel prediction model was proposed to examine crash 

frequency and severity simultaneously for public highway-rail grade crossings in North Dakota 

from 1990 to 2018. The competing risk model has the capability to identify specific crossings’ 

characteristics and to simultaneously model collision occurrence and crash severity probabilities. 

Easy-to-interoperate outputs are one of the advantages of the model. These outputs include the 

estimated coefficients, hazard ratios, and cumulative probabilities. Moreover, the model indicates 

its ability to take into account the dependence of contributors’ effects on crash severity levels. 

The most striking observation to emerge from the competing risk model was: 

1) Type of train service, train detection system, availability of commercial power, 

roadway surface condition, train traffic volume, highway/roadway traffic volume, train 

speed, truck percentage, and number of traffic (road) lanes are all identified as having 

significant effect on crash occurrence likelihood.  

2) HRGCs with passenger train services are more likely to have PDO crashes compared 

to grade crossings with freight train service, but in terms of instantaneous injury and 

fatal crash probability, they did not perform differently. Crossings with higher night 

train traffic volume are more likely at fatal crash risk and are less likely to have PDO 

and injury crashes.  

3) In contrast with night train traffic which significantly affected all three crash severity 

levels, the rest of the contributors have direct cause-specific effects on certain crash 

severity levels (one or two severity levels), but not on all of them.  
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4) CWT train was identified as a significant contributor according to cumulative 

probability perspective which considers the assumption of competing risk 

dependency. 

5) Based on CIF results, the annual PDO crash probability increase is 0.108% in terms of 

grade crossings with passenger train service in comparison with crossings with freight 

train service, which accounts for around 76% of the increase. The reduction in annual 

fatal probability growth rate is 0.033% for HRGCs with passenger train service 

compared to freight train service. Furthermore, HRGCs with DC detection systems 

have lower crash likelihood growth rates in comparison with crossings without 

detection system. Instead, crossings equipped with CWT detection systems are more 

likely to have crash occurrence likelihood compared to those with no detection 

systems.  

6) Finally, HRGCs with freight train service have around a 0.131% reduction in the 

average annual growth rate of crash probability compared to crossings with passenger 

train service. 
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CHAPTER 4. GEOMETRIC ANALYSIS OF HIGHWAY-RAIL GRADE CROSSING 

4.1. Introduction and Background 

 There is an extensive literature on identifying safety performance contributors. However, 

a few studies (Ross D Austin & Carson, 2002; Berg, Knoblauch, & Hucke, 1982) have explored 

quantifying the effects of geometric features on safety performance at grade crossings. This gap 

could be rooted in the lack of detailed HRGC geometric measurements (Washington & Oh, 

2006). Federal Railroad Administration’s (FRA) highway-rail grade crossing inventory dataset is 

the most commonly used database for grade crossing geometric information. Smallest crossing 

angle and the distance between HRGC and its nearby signalized intersection are originally 

continuous numerical covariates. However, the provided values by FRA have been categorized 

into truncated groups. Accordingly, these two factors are available as nominal variables with 1) 

three smallest crossing angle levels of 0-29 degrees, 30-59 degrees, and 60-90 degrees; and 2) 

two distance levels of no greater than 500 feet and greater than 500 feet. According to Ogden 

(2007), these two geometric features could affect crash frequency at grade crossings because of 

their potential influence on sight distance and vehicle storage capacity.  

Few research has explored these two grade crossing geometric factors’ effects on crash 

frequency and severity levels. However, most research on HRGC safety utilized these geometric 

factors as nominal covariates in their analysis. For example, Zhao et al. (2018) considered the 

crossing angle in their study as one the potential contributors associated with pedestrian injury 

severity levels. In their study, the crossing angle feature was used as a categorical (nominal) 

variable including two levels (1: less than 60 degrees; 0 otherwise). Furthered more, Haleem 

(2016) investigated the effects of distance to the nearby (nearest) intersection with 4 levels (≤ 75 

ft.; 75 ft. to 200 ft.; 200 ft. to 500 ft.; and >500 ft.). Their results revealed that those geometric 



www.manaraa.com

 

54 

features are not significant in both proposed models. Yan et al. (2010), Liu and Khattak (2017), 

and Oh et al. (2006) also used both variables as nominal variables with various different levels in 

their study and found that they are not always significant factors to grade crossing crash 

frequency or crash severity. 

A few studies also explored the impact of some other grade crossings’ geometric features 

in their crossing safety analyses (Ross Duane Austin, 2000; Liu & Khattak, 2017; Oh et al., 

2006; Yan et al., 2010). Yan et al. (2010) explored that the number of traffic lanes has a 

significant effect on crash rate based on the negative binomial (NB) model results but not with 

the results of the hierarchical tree-based regression (HTBR) model, but the number of main 

tracks is significant in both models. In addition, Liu and Khattak (2017) indicated that the 

number of traffic lanes has a significant effect on crash injury severity while the number of 

tracks does not. Their results also revealed that the number of tracks has a strong association 

with gate violations. 

Previous related studies have examined grade crossing geometric factors that 

significantly impact safety performance. In this chapter, the proposed competing risk model 

(CRM) is applied to identify contributing geometric factors and calculate their effects on grade 

crossing crash frequency and severity probabilities. Correspondingly, the aims of this chapter are 

1) investigating the crossing geometric factors’ significance on safety performance considering 

both crash severity and crash occurrence in the same model (CRM), and 2) calculating geometric 

factors’ instantaneous and long-term effects on grade crossing safety performance.   
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4.2. Result Analysis 

This study identifies HRGC geometric features’ significance and their estimated 

instantaneous effects and long-term time effects on crossing crash occurrence and crash severity 

likelihoods based on North Dakota data. Detailed results are presented in this section.  

4.2.1. Estimated Coefficients and Hazard Ratio 

According to the Equation (3), estimated HR ( 𝑒𝑥𝑝(𝛽𝑘
⊤𝑍) ) indicates contributors’ 

instantaneous crash/severity probabilities while estimated coefficients (𝛽𝑘  ) quantified the 

contributors’ significance in effects on HR. Table 11 reveals estimated geometric factors’ 

coefficients (Coef) for each severity level and crash occurrence frequency. According to CRM 

cause-specific function output, all the geometric factors listed in Table 11 are identified as 

significant contributors to at least one level of crash severity or to crash occurrence.  

Table 11. Geometric Factors’ Estimated Coefficient and Hazard Ratio  

Geometric 

Factors 

PDO Injury Fatal 
Crash 

Occurrence 

Coef Pr(>|z|) Coef Pr(>|z|) Coef Pr(>|z|) Coef Pr(>|z|) 

Crossing-

Intersection 

Distance 

-0.001 0.024 ** -0.00006 0.87 0.0005 0.32 -0.0005 0.13 

Acute 

Crossing 

Angle 

-0.003 0.48 -0.01 0.02 ** 0.004 0.63 -0.005 0.01 * 

Number of 

Road Lanes 
0.38 0.054 * 0.20 0.37 -0.07 0.88 0.30 0.03 ** 

Number of 

Main Tracks 
0.44 0.45 1.80 0.03 ** 1.79 0.11 0.93 0.03 ** 

 

Table 11 shows that except the distance to a nearby intersection, all geometric factors are 

identified as significant contributors for crash occurrence. Hazard-ratio results will provide 

detailed information to calculate each geometric factor’s impact on the crash frequency and 

severity probabilities. It should be stressed that Table 11 indicates some geometric factors which 
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have a significant impact on the likelihood of certain crash severity levels, but not on others. As 

mentioned earlier in Chapter 3, these results can be a consequence of under-estimation because 

of the independent censoring assumption in cause-specific function. 

Table 12 represents the detailed HR results for all four geometric features, and their crash 

probability changes are estimated as “%impact”.  

Table 11 shows that the distance between a crossing and the closest signalized 

intersection is only found positively significant in PDO crash, but not the other crash types. 

Moreover, according to Table 12, distance between a crossing and the closest intersection 

increases PDO crash likelihood by 0.11% compared to each one-unit increase in this distance. 

Smallest (acute) crossing angle was found to negatively affect both injury and crash occurrence 

probabilities. In addition, for each one-unit increase in acute crossing angle, the crash likelihood 

is reduced 1.05% and 0.48% for injury and crash occurrence, respectively. Table 12 reveals that 

the number of road (traffic) lanes is found to positively affect PDO and crash occurrence. With 

an increase of one traffic lane, the impacts increase about 45.65% and 34.51% for PDO and 

occurrence, respectively. Similarly, number of main tracks is also found to positively impact 

injury and crash occurrence risk. The calculated HRs are 6.06 (505%) and 2.53 (152%) for injury 

and crash occurrence probabilities, respectively. Interestingly, the results reveal that the number 

of main tracks is considerably associated with increases in injury and crash occurrence risks.  

Hazard ratio analyses do not yield direct information about the magnitude of geometric 

factors’ effects on collision risk and severity. HR results only represent the relative crash/severity 

probability directional proportion changes with one-unit increase in the corresponding geometric 

feature. To fully understand and interpret geometric factors’ marginal effects with taking into 
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account the competing risk characteristics of severity levels and cumulative long-term time 

effects, the proposed cumulative incidence-based effect analysis is employed in the next section.  

Table 12. Geometric Factors’ Hazard Ratio and their Marginal Effects 

Variable 
PDO Injury Fatal 

Crash 

Occurrence 

%impact HR %impact HR %impact HR %Impact HR 

Crossing-

Intersection 

Distance 

0.11 1.00  0.006 1.00  0.05 1.00  0.05 1.00  

Acute 

Crossing 

Angle 

0.268 0.997  1.05 0.99  0.36 1.004  0.48 1 .00  

Number of 

Road Lanes 
45.65 1.46  22.41 1.22  6.34 0.94  34.51 1.35  

Number of 

Main 

Tracks 

54.69 1.55  505.56 6.06  496.21 5.96  152.63 2.53  

 

4.2.2. Cumulative Likelihood Estimation 

 According to Wolbers et al., (2014) if a geometric factor as a contribute has no direct 

influence on certain severity level as a failure event, but influences another severity level, then 

the geometric factor may still be significantly associated with the cumulative probability (CIF) of 

the specific severity level and identified as a significant contributor. 

In this section, we focus on the four geometric factors to perform the cumulative 

incidence function analysis. To calculate marginal cumulative probabilities for each geometric 

factor in 2018 (Year 29), the cumulative probability of each severity level (𝐶𝐼𝐹𝑘(𝑡 = 29|𝑍))and 

crash occurrence (𝐶𝐼𝐹𝑐(𝑡 = 29|𝑍)) is calculated at a specific value while all other contributors 

are controlled at a fixed level, mode value. The range of values for each geometric feature is 

defined based on the actual data information used in this study. Distance range between a 

crossing and the nearest intersection is defined from 0 meters to 3,000 meters. Acute crossing 

angle ranges from 1 degree to 90 degrees. Number of roadway lanes ranges from 1 to 4. And the 
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number of main tracks ranges from 1 to 3. Figure 8 indicates the calculated cumulative 

probability and its trends for each geometric factor.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. Cumulative Crash/Severity Probability in 2018 for Geometric Factors 

Figure 8, part (a) reveals a quadratic relationship between cumulative crash probability 

and the distance between a crossing and the closest intersection. The trend indicates that the 

crash likelihood decreases from around 7% to about 4.6% as the distance increases from 0 to 

1,423 meters. The crash occurrence probability then increases to around 6% while the distance to 

the nearest intersection increases to 3,000 meters. The distance between a crossing and the 

closest intersection can define vehicle storage capacity. According to Figure (8), part (a), the 
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crash likelihood can be declined before reaching 1,423 meters, with the vehicle storage capacity 

increasing. On the other hand, when the distance to the intersection is more than 1,423 meters, 

the benefit of a larger capacity of vehicle storage will be hindered by a highway user’s sight 

distance limits. The Railroad-Highway Grade Crossing Handbook (RHGCH) verified the 

minimum safe sight distance must be between 21 to 284 meters to guarantee safe stopping 

distances at various travel speeds (Ogden, 2007; Ogden & Cooper, 2019).  

This study results suggest a substantially longer distance, 1,423 meters, when taking into 

account traffic operational effects with the nearest roadway intersection. From Figure 8, part (a), 

it can be noted that cumulative injury and POD probability have constant reduction as the 

distance to the intersection increases. Instead, cumulative fatal crash likelihood constantly 

increases as the distance increases. While the change is relatively high for probability of the PDO 

and fatal accidents compared to injury crashes, Figure 8 results represent that distance to 

intersection has a relatively smaller impact on injury than on PDO and fatal accident cumulative 

likelihood. It should be noted that the distance to nearest intersection positively impacts on the 

fatal accident probability, but negatively impacts on PDO probability. One reasonable 

explanation can be that better travel conditions might promote aggressive driving behavior and 

cause more severe crash consequences.  

Figure 8, part (b) indicates that crossing angle has a negative effect on probabilities of 

crash occurrence, PDO, and injury crashes. In other words, the cumulative probabilities of crash, 

PDO, and injury crashes decrease while the acute crossing angle increases. One possible 

explanation for this result might be related to improved sight lines. According to Wigglesworth 

(2001), at acute-angled crossings, it may be difficult for highway users to detect a train while it is 

approaching from one of the rear quadrants. It increases the risk of an “over-the-shoulder” 
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accidents. On the other hand, with the increasing crossing angle, the fatal crash likelihood 

increases moderately, from about 0.8% to 1%. This increase might be due to the fact that 

improved travel conditions might promote aggressive driving behavior.  

Figure 8, part (c) reveals that the number of traffic lanes has substantially less impact on 

both injury and fatal crash likelihoods compared to the positive impacts on the likelihoods of 

PDO crashes and crash occurrence. As the number of traffic lanes increases from 1 to 4, crash 

likelihood increases from about 5% to 12%. Figure 8 part (d) shows the number of main tracks 

reveals a strong impact on all crash severity levels and crash occurrence likelihoods. Crash 

likelihood increases dramatically from 3.3% to around 21% as the number of rail tracks increases 

from 1 to 3. A similar increasing pattern for all three crash severity levels exists. Moreover, fatal 

crash likelihood considerably increases from 0.2% to 5.8% as the number of rail tracks increases 

from 1 to 3 which is 2,800% increasing. 

As can be seen from Figure 8, all four geometric features have non-linear impacts on the 

cumulative crash/severity likelihood. To expresses these geometric features’ average marginal 

impact as a proportion, change in crash/severity likelihood for one unit change in a contributor, 

Table 13 presents the estimated results.  

Table 13. Average Marginal Probability Change  

Severity 

Level 

Crossing 

Angle 

Distance to 

Intersection 

Number of Road 

Lanes 

Number of 

Main Tracks 

PDO -0.01% -0.0014% 44% 48% 

Injury -0.03% -0.00008% 21% 443% 

Fatal 0.0033% 0.0013% 7% 440% 

Crash -0.036% -0.00025% 31% 155% 

Table 13 indicates that on average, one-degree increase in crossing angle results in 

around 0.01% decrease in PDO likelihood, a 0.03% decrease in injury likelihood, a 0.0033% 

increase in fatal crash likelihood, and a 0.036% decrease in crash occurrence likelihood. Distance 
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change is in the unit of one meter. It should be noted that the change in marginal likelihood 

percentage only represents the average change within a geometric features’ value range.  
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CHAPTER 5. COUNTERMEASURES EFFECTS ON HIGHWAY-RAIL GRADE 

CROSSING SAFETY PERFORMANCE    

5.1. Introduction and Background 

 Several studies and research projects have focused on the effect of traffic control devices 

(e.g., crossbuck signs, gates, stop signs, etc.) on grade crossing safety outputs (Carroll, Lee, 

Haines, & Hellman, 2002; Eluru et al., 2012; FHWA, 2009; Haleem, 2016; Heathington, 

Fambro, & Richards, 1989; Kim et al., 2002; Jinsun Lee et al., 2004; Lerner, 2002; Liu & 

Khattak, 2017; Liu et al., 2015; Noyce & Fambro, 1998; Ogden & Cooper, 2019; Siques, 2002; 

Washington & Oh, 2006; Yan et al., 2010; Zhao et al., 2018). Haleem (2016b) applied the mixed 

logit and binary logit models to investigate the significant traffic causality covariates at private 

grade crossings. The research results revealed that relatively busy private HRGCs with higher 

frequency of injury and fatal accident records must be equipped with active warning devices 

including gates and flashing lights. Liu and Khattak (2017) proposed a spatial analysis of HRGC 

accidents by applying an approach which integrated path analysis and geo-spatial model. Their 

results showed that the likelihood of a gate violation resulting in a grade crossing accident can be 

associated with variables such as the presence of two or three quadrant gates, higher train speeds, 

and male drivers. 

Moreover, Liu et al., (2015) also applied path analysis to analyze indirect impact of 

crossing warning devices on crash severity level changes. Their results indicated that there is not 

a strong (significant) direct association between crossing warning devices and crash severity 

changes. On the other hand, their findings express that there is a significant correlation between 

the type of crossing waring device and pre-crash behaviors and also between pre-crash behavior 

and crash severity. Eluru et al., (2012) used a latent segmentation-based ordered logit model to 
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investigate the several contributors’ effects on crash severity at grade crossings. Their results 

showed that low-risk crossing segments are defined by higher train traffic, roads with lower road 

classifications, pavement markings instead of stop signs, and the absence of permanent structures 

including gates, stop signs, etc. Washington and Oh (2006) verified and applied the formalization 

and application of the approach to rank 18 types of countermeasures (including gates, stop signs, 

etc.) from “best” to “worst.” Their results revealed that the top three safest warning devices are 

in-vehicle warning systems, obstacle detection, and constant warning time. Yan et al., (2010) 

proposed the hierarchical tree-based regression model as a nonparametric method to forecast the 

annual crash rate at passive crossings with crossbucks sign-only or stop-sign-only. Their results 

indicated that the AADT has the most impact on crash rate prediction associated with crossings 

with crossbucks sign-only, while the daily train traffic is the most effective contributor for 

crossings controlled by a stop sign. 

All these findings have shed light on understanding the effect of specific crossing 

warning devices on either crash rate or severity levels. However, these research have not 

accounted for 1) the impact of modifying the crossing controls’ combination on crash frequency 

and severity changes considering different pre-improvement control conditions (pre-

improvement condition difference), and 2) the long-term time impact of HRGC warning device 

improvements on crash frequency and severity changes. In addition, grade crossings 

characteristics including crossing traffic controls might be changed over time, including before 

and after a collision occurrence (Liu & Khattak, 2017). Correspondingly, estimating crash rate 

and crash severity level changes need to consider the long-term time effect and record 

information changes for all crossing’s characteristics annually. This study will focus on 

quantifying countermeasures’ effects on crash frequency and severity likelihood in one model, 
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taking into consideration pre-improvement control conditions and countermeasure type change 

during a long-term analysis period (29 years in this study). 

Calculating the long-term effect of countermeasures on crash occurrence and severity 

probabilities can increase the modeling complexity. Considering this complexity, in this study, 

the proposed competing risk model (CRM) is applied to investigate the crash occurrence and 

severity likelihood. More detailed explanations regarding this approach are introduced in the 

Chapter 3. In grade crossing safety analysis, the target of CRM is calculating the crash 

occurrence probability considering the crash severity levels (PDO, injury, fatal) as competing 

risk events. In other words, the CRM function in grade crossing safety analysis can be defined by 

calculating HRGC crash likelihood during a 29-year span considering the likelihood of crash 

occurrence with one of three crash severity levels. Moreover, the censoring concept in CRM also 

results in the consolidation and utilization of all available crossing records including crossings 

with no crash records, while previous literature only were able to use only crossings accident 

records as their model input dataset (Eluru et al., 2012; Liu & Khattak, 2017; Liu et al., 2015). 

By applying CRM, this study investigated 1) countermeasures’ significance on both grade 

crossings’ accident severity and crash frequency in the same model, and 2) instantaneous and 

long-term impacts of crossings’ warning devices on crossings safety outputs considering 

different pre-improvement conditions.  

5.2. Result Analysis 

5.2.1. Estimated Coefficients and Hazard Ratio 

All significant countermeasures’ estimated coefficient (Coe) for each crash severity level, 

and crash occurrence (crash) are indicated in Table 14. The cause-specific regression coefficient 

is calculated based on Equation (3) (cause-specific hazard model) which shows the 
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corresponding magnitude change in the cause-specific hazard function for each crossing warning 

device compared to crossbucks-only as the reference. 

For crash occurrence likelihood, one can see from Table 14 that all types of crossing 

control devices (except crossbucks+stopsign compared to crossbucks-only) have positive 

impacts on crash hazard. Most of the control device impact results met the expectations with 

current understanding from previous studies (Lenné et al., 2011; Meeker et al., 1997; Millegan et 

al., 2009; Raub, 2009). The main reason for such results is because it is possible that the active 

controls are able to better attract a driver’s attention and result in greater compliance compared 

to the passive controls.  

Table 14 reveals that Crossbucks and stop sign compared to Crossbucks-only has a 

positive effect on collisions explaining that adding a stop sign to a crossing which already has a 

crossbucks-only control can increase the crash occurrence risk. Such results could be rooted in 

the indiscriminate use of stop signs at passive grade crossings. FHWA established a 10-year 

crossbuck assembly requirement (stopsign+crossbucks sign) for all passive grade crossings in 

2009 (FHWA, 2009). One of the potential rationales for indiscriminate use of the stop sign could 

be peoples’ acceptance and understanding of how to use stop signs correctly before 2009 and 

after. Table 14 shows that some countermeasures show significant effects on certain crash 

severity(s) likelihood but not on all three severity levels except two crossing warning devices 

combination, gates and standard flashing lights and audible, and crossbucks and stop signs. As 

mentioned earlier, the independent censoring assumption can be the main reason for such under-

estimated results. Crossings with gates, standard flashing lights, and audible devices reveal a 

significant negative impact on all crash severity likelihoods compared to crossings with 

crossbucks-only. These results are supported by those from previous studies.
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Table 14. Coefficient Estimation of Crossing Warning Devices  

Countermeasure 
PDO Injury Fatal Crash 

coef Pr(>|z|) coef Pr(>|z|) coef Pr(>|z|) coef Pr(>|z|) 

Gates+CantileverFLS+StandardFLS -1.56 0.108 -1.41 0.132 -12.71 
< 2.2e-

16*** 
-1.62 0.0005*** 

Gates+CantileverFLS+StandardFLS+Audible -13.95 
< 2.2e-

16*** 
-1.76 0.020** -1.07 0.249 -2.75 0.000*** 

Gates+CantileverFLS+Audible 0.51 0.412 -13.73 
< 2.2e-

16*** 
-18.33 

< 2.2e-

16*** 
-0.59 0.410 

Gates+StandardFLS+Audible -2.10 0.000*** -2.04 0.00*** -2.40 0.000*** -2.22 
< 2.2e-

16*** 

Gates+Audible -12.31 
< 2.2e-

16*** 
0.11 0.91 -17.85 

< 2.2e-

16*** 
-1.20 0.262 

Gates+StandardFLS+Audible*StopSigns -1.01 0.176 -12.59 
< 2.2e-

16*** 
-16.27 

< 2.2e-

16*** 
-1.79 0.009*** 

Crossbucks+StopSigns 0.85 0.007*** 1.36 0.00*** 1.30 0.016** 1.14 0.000*** 

Gates 0.03 0.948 -12.65 
< 2.2e-

16*** 
-17.98 

< 2.2e-

16*** 
-0.75 0.070* 

CantileverFLS+StandardFLS+Audible -1.02 0.222 -13.27 
< 2.2e-

16*** 
-18.79 

< 2.2e-

16*** 
-1.42 0.049** 
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For example, Liu et al., (2015) showed that vehicle users are more likely to stop at 

crossings with gates that also have flashing lights and audible warnings. Their results also 

indicated that highway users stopping at gates are associated with lower crash severity. On the 

other hand, in comparison with crossbucks-only, crossbucks and stop signs result in significant 

positive impact on all crash severities. The potential rational might be the fact that stop signs are 

among the traffic controls typically used at regular highway/roadway intersections, possibly 

resulting in confusion among vehicle users at grade crossings (Jeng, 2005). 

As indicated earlier in Equation (3), Cox regression coefficient ( 𝛽𝑘) represents the 

corresponding magnitude change in the cause-specific hazard function associated with a 

countermeasure compared to crossbucks-only as a reference. However, hazard ratio 

( 𝑒𝑥𝑝(𝛽𝑘
⊤𝑋) ) indicates contributors’ instantaneous crash occurrence or severity risk. Table 15 

shows the estimated HR for all crash severity levels and crash occurrence for each crossing 

warning device combination based on Equation (3). In terms of a categorical variable, HR 

estimates the crossing’s relative risk with a specific contributor’s value level compared to the 

reference level. As explained earlier, an HR greater than 1 indicates an increase in hazard risk, 

and an HR below 1 shows a decline in hazard risk. Percentage change in risk probability for each 

crossing warning device change compared to the Crossbucks-only (reference level) is estimated 

as |HR-1|×100 formula and can be seen as “%impact” in Table 15. 

Table 15 reveals that all crossing traffic control devices decrease crash occurrence and 

fatal crash risk compared to crossbucks-only except crossbucks+stopSigns as all of their 

corresponding HR values are less than 1. Regarding PDO crash likelihood, crossings with 

Gates+CantilevelFLS+Audible and Gates are more likely to have PDO crash compared to 

crossings with crossbucks-only. In terms of injury accident likelihood, gates+audible crossings 
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will have higher injury likelihood compared to crossbucks-only crossings. These three estimation 

results seem counterintuitive. The potential rationale might be related to vehicle users’ pre-crash 

behavior around crossing gates (Ma et al., 2018). Although, they all have a greater-than-1 HR 

value, all of them are near 1 except for the Crossbucks+StopSign which means they are showing 

moderately positive effect. Gates for PDO crashes has 3% positive impact which is almost no 

difference. Gates+Audible for injury crash reveals 12% positive impact. For 

crossbucks+StopSign combination, this study consistently reveals that adding a stop sign to a 

crossing that currently has crossbucks-only might increase crash occurrence, PDO, injury, and 

fatal crash probabilities.  

As mentioned above, this might be rooted in the fact that the crossbucks assembly 

requirement is relatively new and stop signs were typically utilized as a passive traffic control 

device for roadway intersections rather than HRGCs in the community. Highway users which 

encounter stop signs normally just need to stop and check for approaching traffic in a limited 

distance range. However, for grade crossings, the distance to be checked must be much longer to 

ensure safe operation. Moreover, as stop signs are typically at roadway intersections, their 

presence at HRGCs may cause vehicle users’ confusion (Jeng, 2005). Burnham's (1995) study 

indicated that only 18% motorists might be alerted to the stop signs and 82% were confused or 

semi-confused about the stop signs presence at grade crossings.  

To accurately investigate the marginal effects of such warning devices, a carefully 

designed before-and-after comparative analysis is needed. Although, investigating both the 

estimated coefficient and HR reveals key information, such assessments do not yield direct 

estimations related to the marginal magnitude of contributors’ long-term impact on probability. 

Consequently, the cumulative incidence function (CIF) analysis is conducted to estimate 
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contributors’ marginal effects while considering HRGC traffic control devices’ cumulative long-

term time impacts. 
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Table 15. Crossing Warning Device Hazard Ration Estimation 

Variable 
PDO Injury Fatal Crash 

Impact HR Impact HR Impact HR Impact HR 

Crossing Control (Reference: Crossbucks-only) 

Gates+CantileverFLS+Audible 67% 1.67 100% 0.000001 100% 0.00000001 45% 0.55 

Gates 3% 1.03 100% 0.000003 100% 0.00000002 53% 0.47 

Gates+Audible 100% 0.000005 12% 1.12 100% 0.00000002 70% 0.30 

CantileverFLS+StandardFLS+Audible 64% 0.36 100% 0.000002 100% 0.00000001 76% 0.24 

Gates+CantileverFLS+StandardFLS 79% 0.21 76% 0.24 100% 0.000003 80% 0.20 

Gates+StandardFLS+Audible+StopSigns 64% 0.36 100% 0.0000034 100% 0.0000001 83% 0.17 

Gates+StandardFLS+Audible 88% 0.12 87% 0.13 91% 0.09 89% 0.11 

Gates+CantileverFLS+StandardFLS+Audible 100% 0.000001 83% 0.17 66% 0.34 94% 0.06 

Crossbucks+StopSigns 134% 2.34 288% 3.88 267% 3.67 213% 3.13 
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5.2.2. Cumulative Likelihood Estimation 

One of the competing risk model advantages is the estimation of contributors’ long-term 

robust effects. This effect is provided by the estimation of the cumulative probability of the crash 

severity levels and crash occurrence based on the estimated CIF with equations (5), or (9). In this 

section, the cumulative probability marginal effects of the ten following combinations of active 

and passive controls are assessed: 1) gates, 2) gates and audible, 3) gates and standard flashing 

lights and audible, 4) gates and standard flashing lights and audible and stop signs, 5) gates and 

cantilever flashing lights and audible, 6) cantilever flashing lights and standard flashing lights 

and audible, 7) gates and cantilever flashing lights and standard flashing lights and audible, 8) 

gates and cantilever flashing lights and standard flashing lights, 9) crossbucks (only), and 10) 

crossbucks and stop signs. 

To calculate the cumulative probability marginal effect of each crossing control 

combination, first predicted CIFk, and CIFc for all crossings with and without crash records 

during the 29-year study period are calculated by using equations (5) and (10), respectively. In 

the next stage, using Equation (12), the average annual CIF of each severity level (k) is 

calculated for all CIFs with the same type of crossing control.  

𝐶𝐼𝐹𝑘
̅̅ ̅̅ ̅̅ (𝑡|𝑥𝑝) =

∑ 𝐶𝐼𝐹𝑘(𝑡|𝑥𝑝𝑖)
𝑛
𝑖=1

𝑛
                                          (Equation 12) 

Where, 𝑥𝑝 is variable of specific crossing control p and 𝐶𝐼𝐹𝑘
̅̅ ̅̅ ̅̅ (𝑡|𝑥𝑝) is the average CIF for 

every crossing control p and severity level k. Finally, the marginal countermeasure difference 

can be estimated by Equation (13): 

𝐷𝑘,𝑝−𝑞(𝑡) = 𝐶𝐼𝐹𝑘
̅̅ ̅̅ ̅̅ (𝑡|𝑥𝑝) − 𝐶𝐼𝐹𝑘

̅̅ ̅̅ ̅̅ (𝑡|𝑥𝑞)                              (Equation 13)  

Where, 𝐷𝑘,𝑝−𝑞(𝑡) is the marginal effect of changing crossing control q to p for severity level k at 

year t. 
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Figures 9 and 10 show the 29-year prediction of cumulative crash severity and 

occurrence likelihoods by comparing eight pairs of crossing control devices and their 

combinations. The alternative options are compared by adding a specific device into a device or 

combination of devices as a base option, except for Figure 9 (a). In Figure 9 (a), the base case is 

crossbucks-only and the alternative option is upgrading the control device to gate-only.  

Figure 9 (a) reveals that upgrading from passive control device to active control will 

likely to decrease injury and fatal crash probability. Instead, this switching will increase both 

crash occurrence and PDO probabilities. These findings seem counterintuitive as it is normally 

expected to improve safety performance in crash occurrence and in all severities if a change is 

made from passive control to active control. However, the result reveals that changing the 

control device from gate to crossbucks only as effects on more severe crashes (fatal and injury 

crashes) but does not decrease PDO accidents and crash occurrence in general. 

Figure 9, part b shows that adding gates to the combination of crossings equipped with 

cantilevered flashing lights, standard flashing lights, and audible warnings, will decrease both 

crash occurrence and PDO probabilities, but will increase injury and fatal crash likelihood. In 

other words, upgrading crossings already equipped with flashing lights and audible devices will 

only decrease the likelihood of crash occurrence and PDO crashes but will not decrease the more 

severe crash likelihood. Similar results are found in the previous studies. Gates were found to 

decrease the crash rate as they generate physical barriers and cause a decline in the probability of 

vehicle-train collisions (Austin and Carson, 2002; Elvik et al., 2009; Ogden, 2007; Ogden and 

Cooper, 2019; Park and Saccomanno, 2005; Raub, 2009). 
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Figure 9. Crash Severity and Frequency Likelihoods for the First HRGC Control Pairs 

Alternatively, because of some drivers’ pre-crash aggressive behavior (e.g., going around 

gates, and gate-violations) might also result in more severe crash occurrences. Consequently, 

some previous studies’ findings revealed that the gated crossing accidents are associated with 

higher likelihood of more severe crashes (Cooper & Ragland, 2012; Raub, 2009).  
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Figure 9, part c shows that adding stop signs to crossings with crossbucks will 

considerably increase the crash occurrence and severity likelihood. This results are consistent 

with previous coefficient and hazard ratio investigations. These likelihoods are increased 

significantly by 284%, 235%, 333%, and 364%, respectively (annually). On the other hand, 

Figure 9, part d indicates that adding stop signs to actively controlled crossings will decrease 

crash occurrence, injury, and fatal crash probability. Instead, PDO, a less severe crash likelihood, 

is increased cumulatively by 47% in the 29-year study period. These results are in line with 

previous studies’ findings (Bezkorovainy & Holsinger, 1966; Burnham, 1995; Russell & 

Burnham, 1999; Sanders, McGee, & Yoo, 1978). For example, according to the Lerner (2002), 

widespread use of stop signs may result in a negative impact on other passive crossing controls 

safety operation (i.e., crossbucks or yield) as their use might reduce the credibility of passive 

crossing controls. It should be noted that this study finding reveals that adding stop signs to 

crossings with crossbucks-only will have negative effects on crash occurrence and all severity 

crashes, but adding a stop sign to an already actively controlled crossing will have additional 

positive effects on decreasing crash occurrence and more severe crashes. In addition, it has a 

negative effect of increasing the likelihood of less severe crashes such as PDO. 

As can be seen from Figure 10, part a, adding audible devices to crossings with 

combination of gates, cantilevered flashing lights, and standard flashing lights will decrease 

crash occurrences and PDO crashes by 16% and 100% respectively annually. Doing so will also 

result moderately decrease injury crash likelihood between years 4 and 25, and shows no effect 

on injury crash probability for the rest of the study period. These results are expected as the 

presence of audible devices warns highway users approaching the crossing (Haleem & Gan, 
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2015). However, this type of crossing control upgrade could considerably increase the fatal crash 

likelihood which is counterintuitive.  

Figure 10, part b shows adding an audible device to crossings already had gates will 

decrease PDO and fatal accidents to nearly zero. Moreover, such improvement will decrease 

crash occurrence by around 24% cumulatively during the 29-year study period. However, in this 

research, adding bells as an audio device at HRGCs equipped with gates and flashing lights will 

increase injury crash probability. These results differ completely from previous studies’ findings. 

The Federal Railroad Administration (2011) research findings revealed that driving around or 

through the gates is more likely to happen at HRGCs with gates and flashing lights without bells, 

which suggests intentional trespassing behavior. On the other hand, Liu et al. (2015) suggest that 

there is a higher possibility of driving around or through the gate at HRGCs with gates and 

audible warnings compared to those with gates only. It might be that such conflicted findings are 

not in conflict. Increased trespassing behavior with bells might be the trespassing that tends to 

result in injury accidents.  

Figure 10, part c, reveals that adding standard flashing lights to crossings with gates, 

cantilevered flashing lights, and audible devices, will result in reduce in PDO crash and crash 

occurrence but will result in increases in injury and fatal crashes. Adding standard flashing lights 

as supplemental flashing light signals or side lights at the HRGCs with cantilevered flashing 

lights will increase the visibility of the crossing, thus making a higher number of highway users 

aware that they are approaching a crossing or that a train is approaching. Accordingly, it can be 

expected that crash rate (frequency) will decrease (Ogden and Cooper, 2019). According to 

flashing lights’ negative impact on more severe crashes, one possible explanation might be 

associated with acute angles. Guided by the traffic control device installation manual grade 
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crossings equipped with additional pairs of light units need to be directed toward vehicular traffic 

approaching the HRGC from highway routes closely adjacent to and parallel to the railroads. 

 

Figure 10. Crash Severity and Frequency Likelihoods for the Second HRGC Control Pairs  

Such structure can generate an acute angle between the railway track and the highway at 

HRGC (Ogden and Cooper, 2019). Previous studies (Ross Duane Austin, 2000; A. Keramati et 

al., 2020; Liu & Khattak, 2017; Oh et al., 2006; Wigglesworth, 2001; Yan et al., 2010; Zhao et 
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al., 2018) all confirmed that acute crossing angles are associated with higher levels of crash 

severity. Correspondingly, it is expected that crossings with standard flashing lights installed as 

additional warning lights are more likely to have more severe crashes.  

Figure 10, part d, shows that adding standard flashing lights to crossings with the 

combination of gates and audible devices will reduce crash occurrence and injury likelihoods but 

will increase PDO and fatal crash probabilities. Lenné et al. (2011) indicates that the mean 

vehicle speed on approach to the HRGCs can be decreased faster in response to flashing lights 

compared to traffic signals. Accordingly, crash occurrence rate is expected to be decreased. 

Although adding flashing lights to crossings with a combination of gates and audible devices 

increases the crossings’ fatal and PDO crash risk, the difference is small, both less than 0.1%.    

To facilitate quantifying such marginal effects and to better illustrate the control devices’ 

upgrading impacts, Figure 11illustrates a chart which summarizes the calculated marginal effect 

of each crossing control change. In other words, Figure 11 provides summary information of 

Figures 9 and 10 by estimating the average annual absolute crash likelihood changes.   

One can see from Figure 11 that switching the crossing control device to gates from 

crossbucks-only will likely decrease injury likelihood on average by 0.12% and reduce fatal 

crash likelihood on average by 0.05%, each year. Instead, the PDO crash likelihood will increase 

by 0.83% annually. Installing a gate at a crossing already having flashing lights and bells will 

significantly reduce PDO likelihood by 1.52%, but will increase the injury and fatal crash 

probability by 0.45% and 0.28% respectively. Adding stop signs to crossings with crossbucks 

signs will increase the crash occurrence likelihood for all three levels, and adding stop signs to a 

crossing already actively controlled will reduce the overall crash rate, but will increase PDO risk 

by 0.14%. Adding audible warning devices to a crossing already actively controlled will 
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decrease the crash rate but will moderately increase more severe crash risk. Moreover, adding 

audible warning devices to a crossing which is actively controlled by the gate only leads to 

decrease the crash occurrence likelihood by 0.25%, but increase the injury risk by 0.78%. 

Finally, adding standard flashing lights to crossings which are actively controlled leads to 

decrease in crash occurrence likelihood.  
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Figure 11. Average Annual Crash Likelihood Change for Crossing Traffic Control Change 
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CHAPTER 6 MODEL VALIDATION 

6.1. Introduction 

 Brier score (BS) is a strictly proper scoring rule to assess the prediction performance of 

CRM approach by defining the prediction error (Brier, 1950; Gneiting & Raftery, 2007; Amin 

Keramati, Lu, Iranitalab, Pan, & Huang, 2020; Winkler & Murphy, 1968). BS can be estimated 

by the squared difference of the actual and predicted outcome. In this study, the time-dependent 

BS (Gerds & Schumacher, 2006; Graf, Schmoor, Sauerbrei, & Schumacher, 1999) is considered 

to assess the CIF performance of the competing risk model. The expected BS for crash severity k 

can be estimated by Equation (14): 

𝐵𝑆̂𝑗𝑘(𝑡) = 𝐸𝑖{𝑁𝑘,𝑖(𝑡) − 𝐶𝐼𝐹̂𝑘(𝑡|𝑥𝑖)}
2
, 𝑥𝑖 ∈ Z                         (Equation 14) 

In the above equation, 𝑁𝑘,𝑖(𝑡) is equal to 1 if crossing record i experiences crash severity k 

before time t, and it is equal to 0 if record i has not experienced any of crash severities (event-

free) until time t. Correspondingly, 𝐶𝐼𝐹̂𝑘(𝑡|𝑥𝑖) is estimate of cumulative incidence function of 

severity level k for record i before time t. 

6.2. Bootstrap Cross-Validation 

To compare the prediction performance of different fitted RSF models, the specific type 

of bootstrap cross-validation approach is used which is “bootstrap.632 plus estimate”. The 

bootstrap.632 was proposed by Efron and Tibshirani (1997) as an improvement on cross-

validation associated with misclassification rate. As the .632 plus was studied for other loss 

functions including BS, it is considered as a superior choice (Gerds & Schumacher, 2007; Jiang 

& Simon, 2007; Molinaro, Simon, & Pfeiffer, 2005; Wehberg & Schumacher, 2004). The term 

“bootstrap cross-validation” was first defined in Fu et al. (2005), whereby models are trained and 

tested in each bootstrap sample and cross-validated on all data. Bootstrap cross-validation 
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method was compared with many other cross-validation algorithms and recommended by 

Mogensen et. al., (2012). The bootstrap cross-validation approach splits the original data 𝐷𝑁 into 

a number of bootstrap training samples 𝐷𝑏 (1000 in this study) and corresponding test samples 

𝐷𝑁\𝐷𝑏 (b=1,…, B) without replacement from the original data. 𝐶𝐼𝐹̂𝑘,𝑏 is then trained with each 

bootstrap training data 𝐷𝑏 and prediction errors are calculated and tested with corresponding test 

sample. In the last step, the bootstrap cross-validation estimate of the prediction error for each 

crash severity k (BCvE) can be calculated by averaging over the test datasets by Equation (11).  

𝐵𝐶𝑣𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂) =
1

𝐵
∑

1

𝑀𝑏
∑ 𝐸𝑖{𝑁𝑘,𝑖(𝑡) − 𝐶𝐼𝐹̂𝑘,𝑏(𝑡|𝑥𝑖)}

2

𝑖∈𝐷𝑁\𝐷𝑏

𝐵
𝑏=1         (Equation 15) 

In Equation (15), 𝑀𝑏 indicates the size of the bootstrap samples for resampling without 

replacement.  

Bootstrap.632 plus estimate of the prediction error is a weighted combination of the 

BCvE, the apparent estimate, and the no information estimate. The apparent estimate of the 

prediction error is estimated by resubstitute the all n crossings’ records of 𝐷𝑁 used to build the 

model as shown in Equation (16).  

𝐴𝑝𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂) =
1

𝑁
∑ 𝐸𝑖{𝑁𝑘,𝑖(𝑡) − 𝐶𝐼𝐹̂𝑘(𝑡|𝑥𝑖)}

2

𝑖∈𝐷𝑁
                  (Equation 16) 

Since the cross-validation estimators assess the prediction rule trained with less 

information than provided by the full data, they tend to be positively biased. Efron (1983) 

proposed solution is to balance the downward bias of the apparent error by linear combination 

with the upward bias of the bootstrap cross validation estimator which results in a bootstrap .632 

error (B632E). Consequently, the bootstrap .632 estimate of the prediction error can be defined 

as a weighted linear combination of the apparent estimate and the bootstrap cross-validation 

estimate (Equation (17)) (Gerds & Schumacher, 2007).  
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𝐵632𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂) = (1 − 0.632). 𝐴𝑝𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂) 

+0.632. 𝐵𝐶𝑣𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂)                                (Equation 17) 

The constant 0.632 is independent of the sample size and refers to the probability to draw 

with the replacement subject or crossing record i into the bootstrap sample. Efron and Tibshirani 

(1997) improved the bootstrap .632 error by proposing the estimation of no-information error 

(NoInfErr). The idea of no-information error is to evaluate the performance of the prediction rule 

while the status with no crash occurrence (survival status in survival analysis) is independent of 

the covariates. Consequently, the no-information estimation is calculated by permuting the status 

indicator for crossing record i and 𝑖́ for all i = 1, …, n as it is indicated in Equation (18). 

𝑁𝑜𝐼𝑛𝑓𝐸𝑟𝑟(𝑡, 𝑘, 𝐶𝐼𝐹̂) =
1

𝑁2
∑ ∑ 𝐸𝑖{𝑁𝑘,𝑖́(𝑡) − 𝐶𝐼𝐹̂𝑘(𝑡|𝑥𝑖)}

2

𝑖∈𝐷𝑁𝑖́∈𝐷𝑁
      (Equation 18) 

Finally, by using Equations (15), (16) and (18), the bootstrap .632 plus estimate of the 

prediction error is defined by Equation (19):    

𝐵632𝐸 (𝑡, 𝑘, 𝐶𝐼𝐹̂) = (1 −
0.632

1 − 0368.𝜔
) . 𝐴𝑝𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂) 

+
0.632

1−0368.𝜔
. 𝐵𝐶𝑣𝐸(𝑡, 𝑘, 𝐶𝐼𝐹̂)                                  (Equation 19) 

Where 𝜔 is estimated by the following Equation: 

𝜔 =  
min(𝐵𝑜𝑜𝑡𝐶𝑣𝐸𝑟𝑟(𝑡,𝑘,𝐶𝐼𝐹̂),𝑁𝑜𝐼𝑛𝑓𝐸𝑟𝑟(𝑡,𝑘,𝐶𝐼𝐹̂))−𝐴𝑝𝑝𝐸𝑟𝑟(𝑡,𝑘,𝐶𝐼𝐹̂)

𝑁𝑜𝐼𝑛𝑓𝐸𝑟𝑟(𝑡,𝑘,𝐶𝐼𝐹̂)−𝐴𝑝𝑝𝐸𝑟𝑟(𝑡,𝑘,𝐶𝐼𝐹̂)
           (Equation 20) 

Not that Integrated Brier score (IBS) is used to summarize the prediction error curves which are 

created based on the calculation of BS. Equation (21) indicates IBS estimation for crash severity 

k:  

𝐼𝐵𝑆 (𝐵𝑆 , 𝑘, 𝒯) =  
1

𝒯
∫ 𝐵𝑆 (𝑢, 𝑘)

𝒯

0
𝑑𝑢                        (Equation 21) 
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In the above equation, 𝒯 > 0 is any value smaller than the minimum of the maximum times for 

which the estimated 𝐵𝑆s can be evaluated in each bootstrap sample.  

6.3. Result Analysis 

In this study, the cross-validation bootstrap approach is used to evaluate the prediction error 

(time-dependent BS) of proposed Cox hazard regression model for each crash severity level. A 

total number of 1000 bootstrap samples of training and test data are considered (B = 1000). 

Training set with the size of 63.2% of the original data (2,092 HRGC records), and corresponding 

test sets of about 1,218 records (3,310-2,092 = 1,218) were defined by using the bootstrap without 

replacement.  

 

Figure 12. Cumulative Prediction Error for Each Severity Level  

Figure 12 shows the cumulative prediction error curves which are estimated based on the 

BS of each crash severity level. Prediction error curves results indicate less than 8%, 4%, and 2% 
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errors for PDO, injury, and fatal crash likelihood, respectively, over the 29-year prediction period. 

Moreover, the integrated brier scores between 0 and 29 years resulted by the bootstrap .632 plus 

estimates of the prediction error are 0.04, 0.02, and 0.01 for PDO, injury and fatal crashes 

respectively. Applying Cox regression hazard model to solve the competing risk model in this 

study demonstrates its accuracy in prediction as the time-dependent Brier Score results indicated 

less than 8%, 4%, and 2% errors and IBS of the prediction error curves results showed only 0.04, 

0.02, and 0.01 for three crash severity levels of PDO, injury, and fatal respectively.  
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CHAPTER 7. HIGHWAY-RAIL GRADE CROSSING HAZARD RANKING 

7.1. Introduction 

 Transportation and decision makers need systematic approaches to evaluate and identify 

crossings that need safety improvements. Identifying these systematic methods is essential to 

ensure that federal and state funds for highway-rail grade crossing improvement projects are 

allocated to locations and crossings at higher risk of crash (Ogden & Cooper, 2019). The most 

prevalent prioritization approaches for ranking highway-rail grade crossings are hazard index 

and collision prediction formula techniques. While the hazard index is used to estimate a value 

that ranks crossings in relative terms (the higher the quantified index, the more hazardous the 

crossing), the collision prediction formula (prediction model) is utilized to quantify the predicted 

crash frequency or severity. A few research projects and state DOTs used a hybrid models which 

consists both a crash frequency (as the output of the collision prediction formula) and a hazard 

index approach (Niu et al., 2014; Weissmann et al., 2013).  

The most common hazard-ranking approaches used by state DOTs are 1) the U.S. DOT 

Accident Prediction Formula, 2) the New Hampshire Hazard Index Formula 3) the NCHRP 

Report 50 Accident Prediction Formula, and 4) the Peabody–Dimmick Formula. Figure 13 

indicates the distribution of HRGC hazard-ranking models and formulas utilized by state DOTs 

according to the review of the state Section 130 program reports (Section 130 Program reports, 

2014). 78% of states (39 states) utilize one or more hazard-ranking formulas or provide several 

contributors considered in grade crossing evaluation for project prioritization and selection 

(Sperry et al., 2017a).  
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Figure 13. State DOTs’ Grade Crossing Hazard-Ranking Models  

One can see from Figure 13 that U.S. DOT accident prediction model is the most 

common hazard ranking model which is used by state DOTs. 38% percentage of states (nineteen 

states) that reported the use of hazard-ranking models have utilized U.S. DOT accident 

prediction model. 22% of states (eleven states) reported the use of their state-specific hazard-

ranking approaches. In addition, a 10% percentage of states (five states) apply New Hampshire 

hazard index, one state uses the NCHRP 50 collision prediction model, and again only one state 

utilizes the Peabody-Dimmick formula. A few number of states use a modified version of one of 

four mentioned formulas, and some states utilize multiple hazard ranking formulas in their 

prioritization system. For example, state of Mississippi applies U.S.DOT model as the input of 

their specific weighting formula. Moreover, Nebraska DOT uses both the U.S.DOT and the 

NCHRP 50 models for their prioritization aims. The rest of the states (11 states or 22%) reported 

no information regarding their hazard-ranking approach(s) or they utilized methodologies other 

than a formula-based ranking approached. It should also be noted that more than 50% (six of the 

eleven states) of the states with no formula-based ranking approach were among the states with 

the fewest numbers of grade crossings.  
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Hazard-ranking approaches calculate crossings’ rank values or crash likelihood based on 

the crossings’ characteristics and factors. Therefore, it is important to understand which factors 

and contributors are used in hazard ranking approaches to quantify the crossings’ ranks or crash 

likelihood. These factors can be geometric factors of crossings like crossing angles and distance 

to a nearby intersection or traffic exposure factors, such as day-time train traffic, roadway traffic, 

and train speed. Table 16 demonstrates the contributors that thirty nine state DOTs consider in 

their grade crossing hazard-ranking methodologies based on the reports provided by Sperry et al. 

(2017) and state section 130 program (2014). Table 16 indicates that the three most common 

contributors that state DOTs considered in their crossing hazard ranking analysis are annual 

average daily traffic (AADT), train volume, and crossing control types which are all used by 

more than 90% of state DOTs. According to Table 16, the other key contributors are crash 

history (crash frequency), train speed, and the number of main tracks. 

One can see from Table 16 that around 60% of states considered highway characteristics 

including number of traffic lanes and road paved condition, and the rest of the contributors are 

considered by less than 5% of the state DOTs. In addition, Table 16 indicates that just one state 

(California state) considers crash severity and none of the states considered pavement markings, 

train detection system, commercial power, and percent of trucks as their hazard-ranking 

methodology variables. Current state DOTs’ ranking approaches help rank grade crossings based 

on the factors effect on likelihoods of crash occurrence, but they are not helpful in recognizing 

crossings’ rank considering both their crash frequency and severity likelihood and factors which 

can effect on crossings’ crash frequency and severity. Therefore, in this chapter, two hazard-

ranking models are proposed, the first one is based on the crash likelihood resulted by the 

proposed CRM output, and the second one is a hybrid accident prediction model hazard index 
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based on crash severity likelihoods estimated by the same CRM. Moreover, all of contributors in 

Table 16 are considered in the both proposed hazard-ranking approaches. Finally, to integrate the 

results of both hazard-ranking approaches, and classify grade crossings and crossings’ location 

based on their crash frequency and severity likelihood simultaneously, the risk analysis is 

conducted by using the risk matrix and spatial risk analysis.   

Table 16. Considered Contributors by States to Rank HRGCs (Sperry et al., 2017a) 

Contributors 
Number 

of States 

Annual Average Daily Traffic (AADT)  39 

Train Volume  39 

Crossing Control Types  36 

Crash History  29 

Train Speed 29 

Number of Main Tracks  28 

Number of Traffic Lanes 24 

Roadway Paved Condition 23 

Highway Speed Limit 5 

Distance to the Nearest Intersections 3 

Type of Train Service 3 

Crash Severity  1 

Crossing Angle  1 

Pavement Markings 0 

Train Detection System 0 

Commercial Power 0 

Percent of Trucks 0 

7.2. Literature Review 

Variety of hazard ranking approaches for grade crossings were used by state DOTs 

before proposing U.S.DOT accident prediction model in the mid-1970s (Faghri & Demetsky, 

1986). The New Hampshire Hazard index, the NCHRP 50 accident prediction model, and the 

Peabody-Dimmick formula are the most known hazard ranking models which have been utilized 
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by state DOTs and other local highway agencies for many decades and are still in use by some 

state DOTs.  

One of the earliest hazard-ranking approaches for grade crossings is the New Hampshire 

hazard Index which is the hazard index type formula. The five states of Kansas, Louisiana, 

Massachusetts, Michigan, and Nevada utilize the New Hampshire hazard index as their primary 

approach for ranking highway-rail grade crossings and their crossings safety improvements 

(Sperry et al., 2017a). The New Hampshire hazard index is the basic type of the hazard index 

method as it considers only 1) a protection factor adjustment indicates the type of crossing 

warning device, and 2) the exposure index estimated by the cross product of the AADT and train 

traffic volume (Faghri & Demetsky, 1986; Qureshi et al., 2003; Tustin et al., 1986). The main 

reason that the New Hampshire hazard index or its local modifications are the most common 

hazard-ranking formula used by states historically is the fact that this model structure is simple 

and understandable.  

Equation (22) indicates the New Hampshire hazard index formula (Ogden & Cooper, 

2019):   

𝐻𝐼 = (𝑉) ∗ (𝑇) ∗ (𝑃𝐹)                                       (Equation 22) 

Where HI is the calculated hazard index value, T is Train movement per day at HRGC, and PF 

notes the protection factor based on the warning device type at HRGC. The classic New 

Hampshire Hazard Index formula considers the protection factors for automatic gates, flashing 

lights, and signs only are 0.1, 0.6, and 0.1 respectively. Some states modified these protection 

factors to consider different levels of protection for each crossing. For example, the Michigan 

DOT considers 13 different protection factors values associated with the presence of more types 

of traffic control devices in its New Hampshire Hazard Index (MDOT, 2017). 
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In 1968, National Cooperative Highway Research Program Report 50 (NCHRP 50) 

defined and evaluated contributors having effect on grade crossing safety (D W Schoppert & 

Hoyt, 1968). NCHRP 50 provided a prediction model to predict 1) train-vehicle accidents at 

HRGCs, and 2) accidents occurrence near HRGCs while trains do not involve(David W 

Schoppert & Hoyt, 1967). Illinois DOT utilizes the NCHRP 50 accident prediction model as the 

primary hazard-ranking method to rank grade crossings based their safety level. In addition, 

Nebraska DOT uses NCHRP 50 jointly with another method(Sperry et al., 2017a). Although the 

NCHRP 50 is a prediction model in contrast with the New Hampshire hazard index which is a 

hazard index mythology, the NCHRP 50 model considers the same factors that the New 

Hampshire hazard index considers plus AADT. In other words, the NCHRP 50 model is a basic 

multiplicative method which is able to predict the annual crossings’ crash frequency by 

considering factors including AADT, train volume, and HRGC warning devices. The NCHRP 50 

formula is as follows (Ogden, 2007):  

𝐸𝐴 = (𝐴)(𝐵)(𝐶𝑇𝐷)                                       (Equation 23) 

In Equation (23), EA notes the expected accident frequency, A is the vehicle per day factor, B 

indicates a protection factor associated with type of warning device at a grade crossing, and CTD 

represents the current train per day.  

The another hazard-ranking model which is one of the accident prediction formulas is 

Peabody–Dimmick formula proposed by T. B. Dimmick of the Bureau of Public Roads in 1941 

(Niu et al., 2014). This collision prediction model was developed based on crash records and 

crossing characteristics of over 3,500 HRGCs located in 29 states. Georgia DOT is the only state 

which uses the modified version of Peabody–Dimmick formula for its grade crossing hazard-

ranking.  
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The Peabody–Dimmick formula is indicated as follows (Khattak & Liu, 2018):  

𝐴5 = 1.28 ×
(𝒱0.170)(𝑇0.151)

𝒫0.171 + 𝐾                              (Equation 24) 

Where 𝐴5 is the accidents expected number at a grade crossing in five years, 𝒱 indicates AADT, 

T notes the average daily through trains, 𝒫 represents a protection coefficient which indicates 

presence of warning devices, and K which is an additional parameter and is determined 

according to a graph. Formula is able to consider AADT and number of through trains to 

estimate crash exposure, but does not utilize the temporal distribution of roadway and rail traffic 

(Khattak & Liu, 2018). 

Figure 13 indicates that the most popular hazard-ranking model is the U.S. DOT accident 

prediction model which is a multistage formula predicting annual crash frequency at HRGCs. 

The U.S. DOT accident prediction model was proposed in the mid-1970 with the target of 

HRGC selection process projects which is known as the Rail-highway Crossing Resource 

Allocation Procedure (Farr, 1987a). The basic steps of the U.S. DOT accident prediction model 

are as follows (Ogden & Cooper, 2019; Sperry et al., 2017a):  

1) Developing a mathematical model to calculate the preliminary estimate of annual crash 

frequency at a grade crossing.  

2) Provide and adjustment to the main estimate on the basis of the HRGCs’ accident 

history. 

3) Normalizing constant adjustment for current crossings’ accident trends. 

4) Proposing additional prediction models (mathematical formulas) to predict the 

probability of crash occurrence resulting in an injury or a fatality. 

It is noteworthy that the last step is mentioned as an optional step based on Ogden and 

Cooper (2019). In comparison with above-mentioned hazard-ranking models (the New 
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Hampshire hazard index, NCHRP 50 accident prediction model, and Peabody–Dimmick 

Formula), U.S DOT accident prediction model considers a wider variety of factors. Factors 

which are considered in original U.S. DOT accident prediction model are the type of crossing 

control device (warning device), AADT, train volume, maximum train speed, number of main 

tracks, number of traffic lanes and roadway paved condition (paved or unpaved). In this accident 

prediction model, the accident records reflect a five years of a grade crossing’s crash history. In 

other words, any HRGC has experienced an accident over the past five years, the model 

estimates a higher accident prediction value for that crossing.  

The U.S. DOT accident prediction formula is as follows (Khattak & Liu, 2018): 

𝑎 = (𝐾)(𝐸𝐼)(𝐷𝑇)(𝑀𝑆)(𝐻𝑃)(𝐻𝐿)(𝐻𝑇)                            (Equation 25) 

Where K is a constant, EI notes the exposure index factor, DT indicates the day through trains, 

MS represents the max train speed, MT is the number of main tracks, HP is the highway paved 

factor, HL is the highway lanes factor, and HT shows the highway type factor. Although the U.S. 

DOT model has been the most popular hazard-ranking model utilized by state DOTs, it has also 

some limitations which were noted by previous studies. For example, Austin and Carson (2002) 

mentioned that the model structure of the U.S. DOT accident prediction model is hard to 

interpret, and it is not clear which factors have a greater impact on the crash probability. In 

addition, Medina and Benekohal (2015) indicated that the model did not make precise 

predictions for crash frequency at high-crash locations.  

Although the above mentioned hazard-ranking models are common models which are 

used by 78 % of states (39 states), some states have developed specific hazard-ranking models in 

accordance with their local accident trends and available crash records (Niu et al., 2014; Sperry 

et al., 2017a; Weissmann et al., 2013). The modified version of New Hampshire hazard index is 
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used by Connecticut DOT as the state hazard-ranking approach. The hazard index approach 

considers more prediction factors associated with different types of crossing control devices. 

Crash history is used as the input of Connecticut DOT’s hazard index method.  

A hazard index methodology known as the exposure index formula was developed in 

2003 by Missouri DOT (Qureshi et al., 2003). Missouri DOT provides an advanced hazard index 

approach which considers detailed HRGCs’ characteristics including type of train service, 

maximum train speed, and crossings’ sight distance. North Carolina is another state which uses 

the hazard index technic as their hazard-ranking model for grade crossings. North Carolina 

DOT’s proposed hazard index which is known as the investigated index model. The initial 

version of this index was initially developed in the 1970s and updated in the 1980s (Sperry, 

Naik, & Warner, 2017b; Zhao et al., 2018). The investigative index model is more 

comprehensive in comparison with U.S. DOT model as the model incorporates contributors not 

included in the U.S. DOT model. These contributors are sight distances, number of main tracks, 

and AADT adjustments for school bus passenger counts and passenger trains (Sperry et al., 

2017a).  

Some states utilize the hybrid accident prediction model/hazard index. Florida is one of 

these states and the proposed model is known as safety hazard index which was developed by 

Florida State University (Niu et al., 2014). The safety hazard index is formulated based on a 

logistic regression model which estimates the expected crash frequency. The model includes 

adjustments for crash history, type of warning device, and the school buses presence at a grade 

crossing location. Texas DOT also utilizes a hybrid accident prediction model/hazard index 

which is known as Texas priority index(Weissmann et al., 2013). The model equation is able to 

convert the predicted crash frequency to a priority index. In this model, the negative binomial 
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regression models are used to estimate the index based on Texas grade crossing collision records. 

Sight distance, the presence of a nearby intersection, area type (urban or rural), and the roadway 

speed limit are variables which significantly effect on crash likelihood based on Texas priority 

index model. 

All the above mentioned hazard-ranking methods are very useful to rank HRGCs 

according to crossings’ crash frequency. However, considering crash severity in the grade 

crossing hazard-ranking is important for agencies as they need to recognize grade crossings 

which are more likely to have severe crashes. Considering the crash severity outputs in a hazard-

ranking model might increase the complexity of the prioritization model as the hazard-ranking 

model should be able to convert three quantities associated with fatal crash, injury crash, and 

PDO crash likelihoods to one priority index for each crossing. In this chapter, we proposed a 

hybrid prediction model/hazard index which can apply such conversion by using analytic 

hierarchy process (AHP) techonomic which is a structured technique for organizing and 

analyzing complex decisions, based on mathematics and psychology (Forman & Gass, 2001).  

In addition, transportation decision makers need a prioritization system to categorize 

crossings’ risk level based on their expected crash frequency and crash severity simultaneously. 

Therefore, with a hazard-ranking approach which considers crossings’ crash severity and 

frequency output, transportation decision makers are able to ensure that federal and state funds 

for grade crossing improvement projects are spent at the crossings that are considered the most in 

need of improvement. Providing such prioritization system needs an integrated one-step model 

which is able to quantify crash frequency and severity likelihood simultaneously. In this chapter, 

two hazard-ranking models are proposed based on the safety outputs of CRM model. The first 

hazard-ranking model type is accident prediction model and ranks HRGCs based on the 

https://en.wikipedia.org/wiki/MCDA
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Psychology
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crossings’ crash frequency likelihood estimated by CRM. The second hazard-ranking model type 

is the hybrid accident prediction model/hazard index which estimates the priority index for each 

crossing based on the calculated crash severity likelihood (using the same CRM model) by using 

AHP technique. Finally, crossings’ risk levels are defined based on their crash likelihood and 

severity ranks by using spatial risk analysis and risk matrix.   

7.3. Methodology 

Two hazard-ranking models are developed based on the crash frequency and crash severity 

likelihoods estimated by CRM. Figure 14 summarized steps for designing the proposed 

prioritization system for 3,194 public grade crossings in North Dakota state. At the first step (step 

a), cumulative crash likelihood and cumulative fatal, injury and PDO crash likelihoods for 30 years 

is estimated for each crossing with its specific characteristic in year 2018. In the next step (step b), 

three estimated likelihoods related to each severity level are used as the AHP inputs to calculate the 

priority index (AHP output) for each crossing. At step c, crossings are ranked based on their AHP 

results or their crash likelihood in relative terms, a higher AHP results/crash likelihood indicating a 

more hazardous crossing. Accident prediction hazard ranking model is the process of ranking 

crossings based their crash likelihood, and the process of ranking based on crossings’ AHP results 

represents hybrid accident prediction/hazard index model. In the final step (step d), the risk matrix 

technique is used to integrate the results of both hazard-ranking models by categorizing crossings 

into four main risk groups of high risk, moderate risk, low risk, and very low risk. 
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Figure 14. Hazard-Ranking Developing Model Fellow Chart 

7.3.1. Accident Prediction Hazard-Ranking Model 

According to the first proposed hazard-ranking model in this study, crossings are simply 

ranked based on their predicted cumulative crash likelihood for 29 years. Cumulative crash 

likelihood for 29 years can be estimated by cumulative incident function before year 30 

(CIFc(t=29|X)) for each crossing. To rank crossings based on their current situation, the CIF for 

each crossing is estimated while the contributors’ values are equal to their 2018 (year 29) 

information. According to Equation (6) and Equation (11), CIFc(t=29|X) can be estimate as 

follows:  

𝐶𝐼𝐹𝑐(𝑡 = 29|𝑋) = ∑ 𝐶𝐼𝐹𝑘(𝑡 = 29|𝑋)3
𝑘=1                             (Equation 26) 

Equation (26) indicates that the cumulative probability of crash occurrence for 29 years (t=29) is 

equal to the sum of the CIF of PDF (k=1), injury (k=2), and fatal (k=3) crash for 29 years. Since 

the afford mentioned ranking approach is based on crossings’ crash likelihood, this model is 

called Crash Likelihood Hazard Ranking (CLHR) model. 
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7.3.2. Hybrid Accident Prediction/Hazard Index Model 

The main concept of AHP as a decision-making technique is providing a hierarchy to 

handle problems related to ranking alternatives considering a number of criteria. According to 

this model, factors playing a key role in decision-making process are compared in a pairwise 

manner, and a quantitative scale is created to calibrate the subsequent outputs. In the next 

subsections, definition and mathematical formulations needed to apply the AHP model to rank 

grade crossings are explained in detail.  

7.3.2.1. Hierarchy Structure Design 

To apply AHP model, the first step is modeling the problem as a hierarchical structure 

which is composed of the decision goal, alternatives, and the criteria for evaluating the 

alternatives. In this hierarchy, the decision goal forms the top level, the intermediate level 

consists the criteria and the bottom level includes the decision-making alternatives. In this study, 

AHP technique is applied to calculate the hazard index of crossings which is equivalent to the 

global scores of alternatives in AHP hieratical structure. The predicted value of 29-year 

cumulative PDO crash likelihood (𝐶𝐼𝐹𝑖,𝑃𝐷𝑂(𝑡 = 29)), injury crash likelihood (𝐶𝐼𝐹𝑖,𝐼𝑛𝑗(𝑡 = 29)), 

and fatal crash likelihood 𝐶𝐼𝐹𝑖,𝐹𝑎𝑡𝑎𝑙(𝑡 = 29)) are integrated in the procedure to measure each 

crossing i’s hazardous level from the perspective of its crash severity likelihood. Figure 15 

indicates the AHP hieratical structure based on crossings’ hazardous level. 
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Figure 15. Analytic Hierarchy Model for Grade Crossing Ranking  

7.3.2.2. Criteria Weigh Vector Estimation 

By considering m criteria for pairwise comparison, the m × m matrix A is generated. Each 

𝑎𝑖𝑗 entry of matrix A notes the relative importance of the 𝑖𝑡ℎ criterion with respect to the 𝑖𝑡ℎ 

criterion. Matrix A contains reciprocal value across the diagonal which shows that for each entry 

𝑎𝑖𝑗 , 𝑎𝑗𝑖 = 1 𝑎𝑗𝑖⁄ .The value of 𝑎𝑖𝑗 is determined based on the ratio-scale ranging from 1 to 9. 

Table 17 indicates the interpretation of each scale (Saaty, 2005).  

Table 17. Interpretation of Numerical Scale of Importance (Saaty, 2005) 

Intensity of Importance (Scale) Explanation 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2,4,6,8 In between their two neighbors 
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The priority weight of the 𝑚𝑡ℎ criterion is estimated by Equation (27). Equation (27) 

indicates the calculation of the maximum eigenvalue 𝜆𝑚𝑎𝑥 and its corresponding eigenvector 𝜔 

of matrix A (Han, Wang, Lu, & Hu, 2020; Saaty, 2005). 

𝐴𝜔 = 𝜆𝑚𝑎𝑥𝜔,𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑚)𝑇                             (Equation 27) 

Where 𝜔𝑚 notes the priority weight of the 𝑚𝑡ℎ criterion. In the AHP approach, 

consistency index (CI) is defined as the index of the consistency of judgement across all pairwise 

comparisons (Alonso & Lamata, 2006). According to Saaty (2005), CI is estimated as follows:   

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                 (Equation 28)  

Where n indicates the order of matrix A. To measure the effectiveness of the comparison matrix 

A in AHP technique, the consistency ratio (CR) is estimated as follows (Saaty, 2000):   

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                    (Equation 29) 

Where RI represents the mean random consistency index and can be determined by Table 18 

(Forman, 1990). The comparison can be only accepted as a consistent one if CR<0.1(Alonso & 

Lamata, 2006). 

Table 18. Mean Random Consistency Index RI (Forman, 1990) 

n 1 2 3 4 5 6 7 8 9 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

In this study, crash severity levels of PDO, injury and fatal are defined as criteria in the 

AHP model. Subsequently, the 𝐶𝐼𝐹𝑖,𝑘  where 𝑘 = {𝑃𝐷𝑂, 𝑓𝑎𝑡𝑎𝑙, 𝐼𝑛𝑗} represents the value of 29-

year cumulative crash likelihood of severity level k for crossing i based on the equations (5) and 

(9). Consequently, considering n=3,194 public grade crossings in this study, the matrix D with 

the size of 𝑛 × 3 can be generated as the main dataset for the AHP model:  
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𝐷 =

[
 
 
 
 
 
𝐶𝐼𝐹1,𝑃𝐷𝑂 𝐶𝐼𝐹1,𝐼𝑛𝑗 𝐶𝐼𝐹1,𝐹𝑎𝑡𝑎𝑙

𝐶𝐼𝐹2,𝑃𝐷𝑂 𝐶𝐼𝐹2,𝐼𝑛𝑗 𝐶𝐼𝐹2,𝐹𝑎𝑡𝑎𝑙

𝐶𝐼𝐹3,𝑃𝐷𝑂 𝐶𝐼𝐹3,𝐼𝑛𝑗 𝐶𝐼𝐹3,𝐹𝑎𝑡𝑎𝑙

⋮ ⋮ ⋮
𝐶𝐼𝐹𝑛,𝑃𝐷𝑂 𝐶𝐼𝐹𝑛,𝐼𝑛𝑗 𝐶𝐼𝐹𝑛,𝐹𝑎𝑡𝑎𝑙]

 
 
 
 
 

                          (Equation 30) 

In the proposed AHP model, the higher weight (𝑎𝑖𝑗) is assigned to the higher crash 

severity level. Consequently, the value of assigned weight to fatal severity level should be more 

than the weight amount of injury severity level. Similarly, the injury level weight should be more 

than PDO level weight. Based on the scales explanations in Table 17, the estimated CR of 16 

different comparison matrixes with different combinations of weights were compared with each 

other and the comparison matrix with minimum value of CR = 0.05 was selected. Table 19 

indicates the selected comparison matrix related to the three severity levels.  

Table 19. Crash Severity Levels Comparison Matrix 

 Fatal Injury PDO 

Fatal 1 6 9 

Injury 1/6 1 3 

PDO 1/9 1/3 1 

The corresponding eigenvector (𝜔) of the above matrix is calculated based on Equation 

(7) and the result is the severity level weight vector of 𝜔 = [0.77, 0.16,0.07] where 0.77, 0.16, 

and 0.07 are fatal, injury, and PDO estimated weights respectively. The estimated weights for 

each severity level can be also seen in Figure 15 at the criteria level.  

7.3.2.3. The Score Matrix and Hazard Index Calculation 

Considering n alternatives whose results are calibrated based on scales in Table 17, 

matrix 𝐵(𝑘) can be generated with respect to the 𝑘𝑡ℎ criterion where 𝑘 = 1, … ,𝑚. 𝑏𝑖ℎ
(𝑘)

 as the 

entry of matrix 𝐵(𝑘) notes the relative importance of the 𝑖𝑡ℎ alternative in comparison with the 

ℎ𝑡ℎ alternative under the 𝑘𝑡ℎ criterion (Han et al., 2020). By calculating the maximum 
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eigenvalue of matrix 𝐵(𝑘) and its corresponding eigenvector 𝑠(𝑘), the group of weight vectors 

𝑠(𝑘) generates the score matrix 𝑆 =  [𝑠(1), … , 𝑠(𝑚)]. Considering n = 3,194 public grade 

crossings in this study, an 𝑛 × 𝑛 pairwise camparison matrix 𝐵(𝑘), 𝑘 = {𝑃𝐷𝑂, 𝑓𝑎𝑡𝑎𝑙, 𝐼𝑛𝑗} can be 

constructed as Equation (31) indicates. In this matrix, 𝑏𝑖ℎ
(𝑘)

= 𝐶𝐼𝐹𝑖,𝑘 𝐶𝐼𝐹ℎ,𝑘⁄  represents the 𝑖𝑡ℎ 

crossing’s crash likelihood with severity level k compared to the ℎ𝑡ℎ crossing’s crash likelihood 

with the same severity level. The weight vectors 𝑠(𝑘) are grouped into the score matrix 𝑆 =

 [𝑠(𝑃𝐷𝑂), 𝑠(𝐼𝑛𝑗), 𝑠(𝑓𝑎𝑡𝑎𝑙) ]. 

𝐵(𝑘) =

[
 
 
 
 
 
𝐶𝐼𝐹1,𝑘 𝐶𝐼𝐹1,𝑘⁄ 𝐶𝐼𝐹1,𝑘 𝐶𝐼𝐹2,𝑘⁄ 𝐶𝐼𝐹1,𝑘 𝐶𝐼𝐹𝑛,𝑘⁄

𝐶𝐼𝐹2,𝑘 𝐶𝐼𝐹1,𝑘⁄ 𝐶𝐼𝐹2,𝑘 𝐶𝐼𝐹2,𝑘⁄ 𝐶𝐼𝐹2,𝑘 𝐶𝐼𝐹𝑛,𝑘⁄

𝐶𝐼𝐹3,𝑘 𝐶𝐼𝐹1,𝑘⁄ 𝐶𝐼𝐹3,𝑘 𝐶𝐼𝐹2,𝑘⁄ 𝐶𝐼𝐹3,𝑘 𝐶𝐼𝐹𝑛,𝑘⁄

⋮ ⋮ ⋮
𝐶𝐼𝐹𝑛,𝑘 𝐶𝐼𝐹1,𝑘⁄ 𝐶𝐼𝐹𝑛,𝑘 𝐶𝐼𝐹2,𝑘⁄ 𝐶𝐼𝐹𝑛,𝑘 𝐶𝐼𝐹𝑛,𝑘⁄ ]

 
 
 
 
 

                 Equation (31) 

The global scores V is the final AHP model result that alternatives can be ranked based 

on it. These scores are calculated by multiplying the score matrix S and the weight vector 𝜔. In 

this study, the estimated global scores are crossings’ hazard index. Therefore, considering 𝑆 =

 [𝑠(𝑃𝐷𝑂), 𝑠(𝐼𝑛𝑗), 𝑠(𝑓𝑎𝑡𝑎𝑙) ], and 𝜔 = (𝜔𝑃𝐷𝑂 , 𝜔𝐼𝑛𝑗 , 𝜔𝐹𝑎𝑡𝑎𝑙)
𝑇, hazard index set is estimated based on 

the following equation:  

𝐻𝐼 = 𝑆.𝜔                                          (Equation 32) 

Where the priority of the 𝑖𝑡ℎ crossing depends on the ℎ𝑖𝑖 of HI. Since the above mentioned 

ranking approach is based on AHP results, the model is called AHP Hazard Index (AHP-HI) 

model and the estimated hazard index in Equation (32) is called AHP Hazard Index (AHP-HI).   
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7.4. Result Analysis 

7.4.1. Ranking HRGCs Based on Crash Likelihood (CLHR Model) 

To rank all public grade crossings in North Dakota according to their crash frequency 

likelihood, 𝐶𝐼𝐹𝑐 for 3,194 grade crossing is estimated based on Equation (26).Then, crossings are 

ranked in relative terms, a higher 𝐶𝐼𝐹𝑐 representing a higher hazardous crossing. For example, 

Table 20 lists the first ten hazardous crossings based on their crash likelihood in part a and the 

ten crossings with the lowest crash likelihood in part b. Table 20 indicates that the likelihood of 

crash occurrence at crossings listed in part a over 29 years is almost 100%, while the same 

likelihood for crossings in part b is almost 0%.  

To understand the risk level of each crossing based on its crash frequency likelihood, 

crossings are classified into four risk groups of very low risk, low risk, moderate risk, and high 

risk. Crossings are classified as very low risk if their estimated 𝐶𝐼𝐹𝑐 is less than 10%. Crossings 

with 𝐶𝐼𝐹𝑐 between 10% and 20% are classified as low risk, and crossings with 𝐶𝐼𝐹𝑐 between 

20% and 40% are classified as moderate risk. Finally, if crossings’ 𝐶𝐼𝐹𝑐 is higher than 40%, they 

are classified as high risk crossings. This study dataset indicates that in North Dakota, 1) 65.3% 

of public grade crossings are at very low risk of crash occurrence, 2) 23.5% of grade crossings 

are low risk crossings, 3) 10.2% of crossings are at moderate risk of accident, and 4) only 1.01% 

percentage of crossing are at high risk of crash occurrence.   
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Table 20. Crossings with Highest (a) and Lowest (b) Crash Frequency Likelihood 

a)  b) 

Crossing ID 
Crash Likelihood 

(𝑪𝑰𝑭𝒄) 
Rank Crossing ID 

Crash Likelihood 

(𝑪𝑰𝑭𝒄) 
Rank 

082143X 100.00% 1 102792E 0.00003% 3194 

062486A 100.00% 2 690558H 0.00005% 3193 

071099G 99.99% 3 080673F 0.00006% 3192 

071735C 99.97% 4 062575S 0.00007% 3191 

086876F 99.83% 5 081107Y 0.00007% 3190 

086787N 99.77% 6 103407C 0.00007% 3189 

071003P 99.76% 7 082305X 0.00007% 3188 

087695E 99.35% 8 691842D 0.00009% 3187 

093368H 99.32% 9 102477N 0.00009% 3186 

695902Y 98.91% 10 102865M 0.00010% 3185 

7.4.1.1. Spatial Risk Analysis Based on Crash Frequency Likelihood 

Despite of identifying crossings that have the most need for safety improvements, 

transportation decision makers need a systematic method to ensure that federal and state funds 

for highway-rail grade crossing improvement projects are allocated to the locations that are 

considered the most in need of improvement (Ogden, 2007). Consequently, in this study, Inverse 

Distance weighted (IDW) interpolation is utilized to map the crossings’ crash likelihood (𝐶𝐼𝐹𝑐) 

resulted by CRM in North Dakota. The IDW interpolation structures a continuous crash 

likelihood surface covering the space for each crossing. The altitudes of this surface varies 

according to the grade crossing’s crash likelihood in a similar location. IDW assigns unknown 

spots a value associated with the crossings’ crash likelihood in nearby areas. This assigned value 

is a geographically weighted average of crash likelihoods, estimated by considering the distance 

between interpolated spots and the known crossings nearby. IDW assumption is that the 

calculated crash likelihoods have a local effect, and this effect decreases as the distance 

increases. The estimated crash likelihood of unknown spots (𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥) is calculated as 

follows (Liu & Khattak, 2017):  
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𝐶𝐼𝐹𝑐(𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥) =
∑

𝐶𝐼𝐹𝑐(𝐿𝑎𝑡𝑦,𝐿𝑜𝑛𝑔𝑦)

𝑑2
𝑀
𝑖=1

∑
1

𝑑2
𝑀
𝑖=1

                            (Equation 33) 

Where, 𝐶𝐼𝐹𝑐(𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥) is the estimated crash likelihood for an unknown spot with 

(𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥) latitude and longitude; 𝐶𝐼𝐹𝑐(𝐿𝑎𝑡𝑦, 𝐿𝑜𝑛𝑔𝑦) represents the estimated crash 

likelihood for a known location (𝐿𝑎𝑡𝑦, 𝐿𝑜𝑛𝑔𝑦); d indicates between the geographic distance 

between two spots of (𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥) and (𝐿𝑎𝑡𝑦, 𝐿𝑜𝑛𝑔𝑦). A set of M geographic neighbors are 

selected to interpolate a coefficient for each unknown spot (𝐿𝑎𝑡𝑥 , 𝐿𝑜𝑛𝑔𝑥). 

Figure 16 indicates the results of IDW interpolation according to the crossings’ crash 

likelihood in North Dakota. Figure 16 illustrates locations at four risk levels of high-risk (crash 

likelihood more than 40%), moderate risk (crash likelihood between 20% to 40%), low risk 

(crash likelihood between 10% to 20%), and very low risk (crash likelihood less than 10%). 

Three areas of A, B, and C are defined as high-risk areas which contain crossings which are 

more likely to have a crash likelihood of more than 40%. Area A, B, and C includes 10, 4, and 

10 high-risk crossings, respectively.  
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Figure 16. IDW Interpolation Based On Cumulative Rash Likelihood for 29 Years 

7.4.2. Ranking HRGCs Based on AHP Hazard Index (AHP-HI Model) 

The AHP hazard index (AHP-HI) of 3,194 public grade crossings in North Dakota is 

estimated according to Equation (32). Then, the crossings are ranked in relative terms, a higher 

AHP-HI representing a higher hazardous crossing. For example, Table 21 lists the first ten 

hazardous crossings based on their AHP-HI in part a and the ten crossings with the lowest AHP-

HI in part b. Table 21 indicates that crossing’s crash severity likelihood plays a key role in their 

ranking. For example, crossings “087695E” and “086787N” both have an equal crash likelihood 

of 99%, but “087695E” is more likely to have a fatal crash (99%) compared to “086787N” 

(74%); consequently “087695E” has higher rank.   
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Table 21. Crossings with Highest (a) and Lowest (b) Crash Severity Likelihood Based On AHP-HI 

a) b) 

Crossing 

ID 
Fatal Injury PDO 

AHP-

HI 
Rank 

Crossing 

ID 
Fatal Injury PDO AHP-HI Rank 

087695E 99% 0% 0% 0.77 1 102792E 0.00000% 0.00001% 0.00002% 0.00000003 3194 

086787N 74% 14% 11% 0.60 2 690558H 0.00000% 0.00002% 0.00003% 0.00000005 3193 

070810H 53% 23% 0% 0.45 3 062575S 0.00000% 0.00001% 0.00005% 0.00000006 3192 

071099G 51% 17% 32% 0.44 4 080673F 0.00000% 0.00002% 0.00004% 0.00000006 3191 

071735C 44% 16% 40% 0.39 5 082305X 0.00000% 0.00002% 0.00005% 0.00000007 3190 

093192A 38% 29% 28% 0.36 6 081107Y 0.00000% 0.00003% 0.00004% 0.00000007 3189 

698277B 36% 42% 20% 0.36 7 102477N 0.00000% 0.00002% 0.00008% 0.00000008 3188 

093310A 34% 14% 42% 0.32 8 103407C 0.00000% 0.00004% 0.00003% 0.00000009 3187 

087174N 31% 20% 34% 0.30 9 081440M 0.00000% 0.00002% 0.00009% 0.00000009 3186 

086747R 32% 16% 23% 0.29 10 698743E 0.00000% 0.00002% 0.00007% 0.00000009 3185 
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To understand the risk level of each crossing based on its AHP-HI, the Centered Moving 

Averages (CMA) technique is used. In CMA method, a number of nearby points (K) are selected 

and their value average is calculated to estimate the Moving Average trend (MA trend). In this 

study, the MA trend of crossings’ crash likelihood is calculated to classify crossings’ risk level 

according to their AHP-HI. To apply this technique, at first all 3,194 crossings are sorted based 

on their AHP-HI value and the trend is plotted as can be seen in Figure 17 (AHP results’ trend). 

In the next step, the crossings’ crash likelihood MA trend are calculated and plotted by 

considering K=85 nearby crossings (Crash likelihood MA smoother in Figure 17). For example, 

to calculate a k=5 crossings moving average, the formula is: 

𝐶𝐼𝐹𝑖 =
𝐶𝐼𝐹𝑖−2+𝐶𝐼𝐹𝑖−1+𝐶𝐼𝐹𝑖+𝐶𝐼𝐹𝑖+1𝐶𝐼𝐹𝑖+2

5
                            (Equation 34) 

Where, i represents the crossing’s numeric ID after sorting crossings based on their AHP-HI 

which crash likelihood trend smoothed at.  

The last step is categorizing crossings into four risk groups according to the crash 

likelihood MA trend. One can see from Figure 17 that crossings with AHP-HI less than 0.02, on 

average have 10% crash likelihood, consequently these crossings are classified as very low risk. 

Similarly, crossings with AHP-HI between 0.02 and 0.04 are classified as low risk, crossings 

with AHP-HI 0.04 and 0.07 are classified as moderate risk, and crossings with AHP-HI more 

than 0.07 are classified as high risk crossings. According to the mentioned risk classification, 

59.8%, 25%, 10.4%, and 4.73% of public grade crossings in North Dakota are classified as very 

low risk, low risk, moderate risk, and high risk crossings, respectively. It should be noted that 

crossings’ AHP-HI is estimated based on severity prioritization. Therefore, crossings with higher 

risk level are crossings that are more likely to have severe crashes. 
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Figure 17. Crossings’ Risk Classification Based On CIF Centered Moving Averages (CMA) 

7.4.2.1. Spatial Risk Analysis Based on Crash Severity Likelihood (AHP-HI) 

Similar to subsection 7.4.1.1, Inverse Distance weighted (IDW) interpolation is utilized 

to map the crossings’ AHP-HI resulted by AHP model, while in Equation (12) crossing’s AHP-

HI is used instead of 𝐶𝐼𝐹𝑐 as the input of IDW interpolation. Subsequently, Figure 18 indicates 

the results of IDW interpolation according to the crossings’ AHP-HI. Figure 18 shows locations 

at four risk levels of high-risk (AHP-HI more than 0.07), moderate risk (AHP-HI between 0.04 

to 0.07), low risk (AHP-HI between 0.02 to 0.04), and very low risk (AHP-HI less than 0.02). 

Three areas of A, B, and C are defined as high-risk areas which contain crossings which are 

more likely to have a AHP-HI more than 0.07. it should be noted that AHP-HI are indicated in 

percentage (AHP-HI×100) in Figure 18. Area A, B, and C includes 18, 9, and 10 high-risk 

crossings, respectively. The high risk areas indicate that these areas contain crossings which are 

more likely to have severe crashes.  



www.manaraa.com

 

109 

 

Figure 18. IDW Interpolation Based on Cumulative Crash Severity Likelihood for 29 Years  

7.4.3. Comparing Ranking Based on Crossings’ Crash Likelihood and AHP-HI 

The pie charts in Figure 19 show the crossings’ fractures according to the four risk 

groups based on crash likelihood and AHP-HI results. There is not considerable difference in the 

percentage of crossings classified as very low risk, low risk, and moderate risk between the two 

ranking approaches. However, the percentage of crossings classified as high risk according to 

AHP results is around five times more than the percentage of high risk crossings which are 

classified according to crash likelihood results. Comparing the expansion of high and moderate 

risk areas defined by two ranking approaches indicates the similar results according. One can see 

from Figure 6 and Figure 6 that more locations are covered by high and moderate risk areas 
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based on AHP-HI results compared to high and moderate risk areas defined based on crash 

likelihood results.  

 

Figure 19. Comparing Risk Classification Approaches 

It indicates the presence of crossings which are more likely to have severe crashes 

compared to the majority of crossings, but they are not considered as high risk based on the 

CLHR approach. It happens because these crossings’ severe crash likelihood (fatal or injury) is 

higher than the majority of crossings, but their crash likelihood, regardless of their severity level 

is not high enough to be classified as high risk based on CLHR approach. To deal with such 

contradictory results, transportation decision makers need an approach to integrate the results of 

both aforementioned ranking approaches and define crossings’ risk level considering their crash 

severity and frequency likelihood simultaneously.  

7.4.4. Mixed Approach Based on Crash Likelihood and AHP-HI Results 

In order to support risk ranking using the mixed approach of CLHR and AHP-HI ranking 

approaches, a risk matrix is devised. In the risk assessment studies, risk matrix is generally a 

table with several categories of probability, likelihood, or frequency as the table rows (or 
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columns) and several categories of severity, impact, or consequences for the table columns (or 

rows, respectively) (S. Ma et al., 2015). In the risk matrix, a recommended level of risk, urgency, 

priority or management action is assigned to each row-column pair or cell (Anthony (Tony) Cox 

Jr, 2008). In this study, AHP-HI and crash likelihood risk levels make the risk matrix rows and 

columns, respectively. In addition, each cell indicates the number of crossings which have both 

AHP-HI and crash likelihood specific risk levels simultaneously. Four risk categories are defined 

based on the intersection of the risk matrix columns and rows: 

1) High Risk: Resulted from intersections of high risk-high risk and high risk-moderate 

risk, and indicates that crossings require immediate priority in decision-making as 

crossings are at the risk of high crash frequency and severe crash occurrence. 

2) Moderate Risk (Md Risk): Resulted from intersections of low risk-high risk and 

moderate risk-moderate risk, and indicates that crossings require attention and control 

process. Crossings might be at the risk of high crash frequency or severe crash 

occurrence.  

3) Low Risk: Resulted from intersections of very low risk-high risk and low risk-

moderate risk, and indicates that crossings might require a specific monitoring 

program. Crossings might be at the risk of moderate crash frequency and/or moderate 

severe crashes.   

4) Very Low Risk (V Low Risk): Resulted from intersections of very low risk-moderate 

risk, very low risk-low risk, very low risk-very low risk, and low risk- low risk, and 

indicates that crossings can be managed based on the current standard controls and 

regulation. 
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Table 22 presents the number of crossings in each risk category. Table 22 indicates that 

192 crossings are in the high risk category and 100 of them might have the higher risk as their 

risk level based on both AHP-HI and crash likelihood is high. In other words, these crossings are 

at the risk of having both high crash frequency and severe crashes. 156 and 242 crossings are at 

moderate and low risk, respectively, and the rest of the crossings are at very low risk.   

Table 22. Risk Matrix Indicating Four Risk Categories 

 

Crash Likelihood   

High 

Risk 

Md 

Risk 

Low 

Risk 

V Low 

Risk 

  

AHP-HI 

High Risk 100 51 0 0 High Risk  

Md Risk 41 153 139 0 Moderate Risk  

Low Risk 3 103 460 234 Low Risk  

V Low Risk 0 6 126 1778 Very Low Risk  

7.4.5. Section Summary 

Two hazard-ranking approaches were proposed based on 1) crossings’ crash likelihood 

and, 2) based on crossings’ AHP hazard index estimated by using crossings’ crash severity 

likelihood. According to the crash likelihood hazard ranking (CLHR) model, 65.3%, 23.5%, 

10.2%, and 1.01% of public grade crossings are at very low risk, low risk, moderate risk, and 

high risk of crash occurrence, respectively.  

Since, transportation decision makers need a systematic method to ensure that federal and 

state funds for highway-rail grade crossing improvement projects are allocated to the locations 

that are considered the most in need of improvement, Inverse Distance weighted (IDW) 

interpolation is utilized to map the crossings’ crash frequency and severity likelihood resulted by 

CRM in North Dakota. Interpolation based on crash likelihood revealed three main high risk 

areas located in west and central counties including Williams, Mountrail, Stark, Billings, 

Burleigh, and Morton. 
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Another proposed hazard raking model is AHP-HI model which estimates the hazard 

index for each crossing by using CRM crash severity likelihood results and AHP technique. 

Based on AHP-HI hazard ranking approach, crossings which are more likely to have severe 

crashes are assigned to the higher AHP-HI. Based on AHP-HI approach, 59.8%, 25%, 10.4%, 

and 4.73% of public grade crossings in North Dakota are classified as very low risk, low risk, 

moderate risk, and high risk crossings, respectively. The spatial risk analysis based on crossings’ 

AHP-HI defines three high risk areas in the west, east, and central part of state. All of the high 

risk locations (red spots) defined based on crossing’s crash likelihood are covered by high risk 

areas defined based on crossings’ AHP-HI plus west area including Grand Forks.    

Finally, to classify crossings’ risk level considering their crash frequency and severity 

outputs simultaneously, the risk analysis was conducted by using risk matrix technique. The risk 

matrix technique can identify which crossings are more hazardous according to their predicted 

crash frequency and expected crash severity which is defined by AHP-HI estimation. Risk matrix 

results reveal that 192 crossings are classified as the high risk category and 100 of them might 

have the higher risk as their risk level based on both AHP-HI and crash likelihood is high. These 

100 crossings are at risk of having both high crash frequency and severe crashes. 156 and 242 

crossings are at moderate and low risk, respectively, and the vast majority of crossings are at 

very low risk.  
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CHAPTER 8 CONCLUSIONS 

8.1. Summary and Conclusions  

This study finding are based on 29-year empirical HRGC safety performance data in 

North Dakota. A novel safety decision-making frame work is designed to help transportation 

agencies and decision makers in identifying hazardous public HRGCs and locations in North 

Dakota. Such safety decision making frame work is generated based on a novel competing risk 

model and strong hazard-ranking approaches. The competing risk model was selected as a novel 

method to conduct simultaneous crash occurrence and severity likelihood analysis. The research 

results reveal knowledge about long-term marginal effects of control devices and geometric 

factors on grade crossing crash occurrence and severity likelihoods. A summary of findings 

associated with geometric and countermeasures effect analysis are as follows: 

1) In general, adding a control device to a HRGC will decrease crash occurrence 

likelihood except when adding stop sign to a crossing already controlled by crossbucks 

only. 

2) Adding a warning device to a HRGC will decrease crash occurrence likelihood, but the 

effects on the three severity levels can be very different. For example, adding stop 

signs to a crossing passively controlled by gate, flash lights, and audible devices will 

decrease injury and fatal risk. However, doing so will increase PDO crash risk even 

though the overall crash occurrence likelihood is decreased.  

3) On average, the distance between a crossing and the nearby intersection and acute 

crossing angle have negative impacts on PDO, injury, and crash occurrence 

probability. However, they both have positive impacts on fatal crash risk. This study 
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results reveals that fatal crash frequency might increase with improved crossing 

operational conditions. This unexpected result could be rooted in aggressive drivers. 

Moreover, considering the proposed hazard-ranking approaches in this study, 

transportation decision makers can utilize one or a combination of the following approaches to 

identify crossings or locations that have the most need for both safety and operational 

improvement: 

1) Applying crash likelihood hazard ranking (CLHR) approach to rank crossings from the 

most hazardous crossing to the safest one, and applying safety/ operational 

improvement for crossing with lower rank (higher crash likelihood).  

2) Applying AHP hazard index (AHP-HI) approach to rank crossings from the most 

hazardous crossing to the safest one, and applying safety/ operational improvement for 

crossing with lower rank (higher crash severity likelihood).  

3) Utilizing spatial analysis proposed in 7.4.1.1 and 7.4.2.1 sections to recognize areas at 

deferent risk levels. Transportation decision makers might start applying safety 

improvements for crossings located in high risk areas for the first step; then for 

crossing located in areas with lower risk levels. 

4) Using the risk matrix information. Transportation decision makers might start applying 

safety improvements for crossings with high risk situation (red cells in Table 22) for 

the first step; then for crossing with lower risk levels based on risk matrix 

categorization.      
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8.2. Limitation and Future Study 

To conduct an accurate analysis of countermeasure’s marginal effectiveness, before-and–

after practical implementation is needed. However, such measurements and data have not been 

available and this study used North Dakota empirical data to apply countermeasures 

effectiveness analysis. Consequently, the uncertainty of this empirical pilot research needs more 

investigation before applying this information as HRGC safety decision-making frame work.  

In addition, the interaction effects of contributors are not considered and quantified in this 

study, including interaction factors might alter the estimated coefficient of crossing warning 

devices. The effect of geometric features of HRGCs and countermeasures interaction on their 

safety performance is still under researched. Consequently, future studies on interaction impact 

of grade crossings’ geometric and warning devices are recommended to evaluate both crash rate 

and crash severity level changes. In addition, countermeasures’ effects with more pre-

improvement conditions must be further researched when supporting data become available.  

In this study, results indicated adding stop sign to a crossing with crossbucks only will 

increase crash rate and all three crash severity levels. Much better controlled experiments are 

needed and better understanding on the effects of cross-buck assembly with stop sign is needed. 

Moreover, safety improvement decision making cannot be accurate if it is solely determined by 

the marginal countermeasures’ effects. Accordingly, life time total cost analysis including initial 

cost of construction, operational cost, and maintenance cost should be conducted in the studies to 

fully understand each countermeasure’s cost-effectiveness. In this study Centered Moving 

Averages (CMA) technique was used as a discretization technique to classify crossings in 

different risk groups based on their AHP results. However, several unsupervised and supervised 

discretization techniques should be applied to identify the most accurate data binning technique 
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to define the crossing risk group. Future studies might aim to utilize unsupervised discretization 

techniques such as Equal-Width, Equal-Frequency, and K-Means or supervised techniques such 

as Decision Tree.   
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